1
|
Froning M, Grütering C, Blank LM, Hayen H. Determination of double bond positions in methyl ketones by gas chromatography-mass spectrometry using dimethyl disulfide derivatives. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9457. [PMID: 36512472 DOI: 10.1002/rcm.9457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
RATIONALE Methyl ketones are of interest for the application as biofuels. The fatty acid metabolism of different microbes has been rearranged to achieve a sustainable production of methyl ketones. The biofuel properties and possible further chemical modifications of these methyl ketones are influenced by their chain length, as well as their degree of saturation and the corresponding double bond position. METHODS A method based on gas chromatography-electron ionization; mass spectrometry (GC-EI-MS) was used to determine the double bond position of methyl ketones. Derivatization using dimethyl disulfide (DMDS) and an iodine catalyst enabled the activation of the double bonds for selective fragmentation during electron ionization. The cleavage led to key fragments in the Orbitrap high-resolution mass spectrum and allowed the unequivocal localization of the double bond position of the respective monounsaturated methyl ketone. RESULTS The double bond position of several medium chain length methyl ketones originating from the gram-negative bacterium Pseudomonas taiwanensis (P. taiwanensis) VLB120 was determined. The DMDS derivatives of methyl ketones can yield isobaric fragment ions for different possible double bond positions, which can be distinguished only using high-resolution MS. The double bond position of all methyl ketones deriving from P. taiwanensis VLB120 was the same, counting from the end of the aliphatic chain, and was determined as ω-7. CONCLUSIONS The derivatization of medium chain length monounsaturated methyl ketones with DMDS allowed the determination of the corresponding double bond position via GC-EI-MS. High-resolution MS is needed to differentiate possible double bond positions that yield isobaric fragment ions.
Collapse
Affiliation(s)
- Matti Froning
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Carolin Grütering
- Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Ziegler AL, Grütering C, Poduschnick L, Mitsos A, Blank LM. Co-feeding enhances the yield of methyl ketones. J Ind Microbiol Biotechnol 2023; 50:kuad029. [PMID: 37704397 PMCID: PMC10521942 DOI: 10.1093/jimb/kuad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
The biotechnological production of methyl ketones is a sustainable alternative to fossil-derived chemical production. To date, the best host for microbial production of methyl ketones is a genetically engineered Pseudomonas taiwanensis VLB120 ∆6 pProd strain, achieving yields of 101 mgg-1 on glucose in batch cultivations. For competitiveness with the petrochemical production pathway, however, higher yields are necessary. Co-feeding can improve the yield by fitting the carbon-to-energy ratio to the organism and the target product. In this work, we developed co-feeding strategies for P. taiwanensis VLB120 ∆6 pProd by combined metabolic modeling and experimental work. In a first step, we conducted flux balance analysis with an expanded genome-scale metabolic model of iJN1463 and found ethanol as the most promising among five cosubstrates. Next, we performed cultivations with ethanol and found the highest reported yield in batch production of methyl ketones with P. taiwanensis VLB120 to date, namely, 154 mg g-1 methyl ketones. However, ethanol is toxic to the cell, which reflects in a lower substrate consumption and lower product concentrations when compared to production on glucose. Hence, we propose cofeeding ethanol with glucose and find that, indeed, higher concentrations than in ethanol-fed cultivation (0.84 g Laq-1 with glucose and ethanol as opposed to 0.48 g Laq-1 with only ethanol) were achieved, with a yield of 85 mg g-1. In a last step, comparing experimental with computational results suggested the potential for improving the methyl ketone yield by fed-batch cultivation, in which cell growth and methyl ketone production are separated into two phases employing optimal ethanol to glucose ratios. ONE-SENTENCE SUMMARY By combining computational and experimental work, we demonstrate that feeding ethanol in addition to glucose improves the yield of biotechnologically produced methyl ketones.
Collapse
Affiliation(s)
- Anita L Ziegler
- Process Systems Engineering (AVT.SVT), RWTH Aachen University, 52074 Aachen, Germany
| | - Carolin Grütering
- Institute of Applied Microbiology (iAMB), RWTH Aachen University, 52074 Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Leon Poduschnick
- Process Systems Engineering (AVT.SVT), RWTH Aachen University, 52074 Aachen, Germany
- Institute of Applied Microbiology (iAMB), RWTH Aachen University, 52074 Aachen, Germany
| | - Alexander Mitsos
- JARA-ENERGY, 52056 Aachen, Germany
- Process Systems Engineering (AVT.SVT), RWTH Aachen University, 52074 Aachen, Germany
- Institute of Energy and Climate Research: Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
3
|
Zhang G, Zhang C, Wang Z, Wang Q, Nielsen J, Dai Z. Dual β-oxidation pathway and transcription factor engineering for methyl ketones production in Saccharomyces cerevisiae. Metab Eng 2022; 73:225-234. [PMID: 35987431 DOI: 10.1016/j.ymben.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
Methyl ketones (MK) are highly valuable fatty acid derivatives with broad applications. Microbes based biosynthesis represents an alternative route for production of these usually fossil based chemicals. In this study, we reported metabolic engineering of Saccharomyces cerevisiae to produce MK, including 2-nonanone, 2-undecanone, 2-tridecanone and 2-pentadecanone. Besides enhancing inherent peroxisomal fatty acids β-oxidation cycle, a novel heterologous cytosolic fatty acids β-oxidation pathway was constructed, and this resulted in an increased production of MK by 2-fold. To increase carbon fluxes to methyl ketones, the supply of precursors was enhanced by engineering lipid metabolism, including improving the intracellular biosynthesis of acyl-CoAs, weakening the consumption of acyl-CoAs for lipids storage, and reinforcing activation of free fatty acids to acyl-CoAs. Hereby the titer of MK was improved by 7-fold, reaching 143.72 mg/L. Finally, transcription factor engineering was employed to increase the biosynthesis of methyl ketones and it was found that overexpression of ADR1 can mimic the oleate activated biogenesis and proliferation of peroxisomes, which resulted in a further increased production of MK by 28%. With these modifications and optimization, up to 845 mg/L total MK were produced from glucose in fed-batch fermentation, which is the highest titer of methyl ketones reported produced by fungi.
Collapse
Affiliation(s)
- Ge Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Chao Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zheng Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Department of Biology and Biological Engineering, Chalmers University of Technology, SE 412 96, Gothenburg, Sweden.
| | - Zongjie Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
4
|
Metabolic engineering strategies to produce medium-chain oleochemicals via acyl-ACP:CoA transacylase activity. Nat Commun 2022; 13:1619. [PMID: 35338129 PMCID: PMC8956717 DOI: 10.1038/s41467-022-29218-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/04/2022] [Indexed: 11/12/2022] Open
Abstract
Microbial lipid metabolism is an attractive route for producing oleochemicals. The predominant strategy centers on heterologous thioesterases to synthesize desired chain-length fatty acids. To convert acids to oleochemicals (e.g., fatty alcohols, ketones), the narrowed fatty acid pool needs to be reactivated as coenzyme A thioesters at cost of one ATP per reactivation - an expense that could be saved if the acyl-chain was directly transferred from ACP- to CoA-thioester. Here, we demonstrate such an alternative acyl-transferase strategy by heterologous expression of PhaG, an enzyme first identified in Pseudomonads, that transfers 3-hydroxy acyl-chains between acyl-carrier protein and coenzyme A thioester forms for creating polyhydroxyalkanoate monomers. We use it to create a pool of acyl-CoA’s that can be redirected to oleochemical products. Through bioprospecting, mutagenesis, and metabolic engineering, we develop three strains of Escherichia coli capable of producing over 1 g/L of medium-chain free fatty acids, fatty alcohols, and methyl ketones. Microbial production of oleochemicals involves strategies of expressing thioesterase to narrow the substrate pool for the termination enzyme at the expense of one ATP. Here, the authors developed an alternative energy-efficient strategy to use of an acyl-ACP transacylase to produce medium chain oleochemicals in E. coli.
Collapse
|
5
|
Zhang XJ, Zhou R, Wu D, Tang YQ, Wang MY, Liu ZQ, Zheng YG. Efficient production of an ezetimibe intermediate using carbonyl reductase coupled with glucose dehydrogenase. Biotechnol Prog 2020; 37:e3068. [PMID: 32822119 DOI: 10.1002/btpr.3068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 11/09/2022]
Abstract
Ezetimibe is a top-selling hypolipidemic drug for the treatment of cardiovascular diseases. Biosynthesis of (4S)-3-[(5S)-5-(4-fluorophenyl)-5-hydroxypentanoyl]-4-phenyl-1,3-oxazolidin-2-one ((S)-ET-5) using carbonyl reductase has shown advantages including high catalytic efficiency, excellent stereoselectivity, mild reaction conditions, and environmental friendness, and was considered as the key step for ezetimibe production. The regeneration efficiency of the cofactor, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) is one of the main restricted factor. Recombinant Escherichia coli strain (smCR125) coexpressing carbonyl reductase (CR125) and glucose dehydrogenase were successfully constructed and applied for the production of (S)-ET-5 for the first time. Without extra addition of the coenzyme NADPH, the yield of 99.8% and the enantiomeric excess (e.e.) of 99.9% were achieved under ET-4 concentration of 200 g/L. Using a substrate fed-batch strategy, under the optimal conditions, the substrate ET-4 concentration was increased to 250 g/L with the yield of 98.9% and the e.e. of 99.9% after 12 hr reaction. The space-time yield of 494.5 g L-1 d-1 and the space-time yield per gram biocatalyst of 24.7 g L-1 d-1 g-1 DCW were achieved, which were higher than ever reported for the biosynthesis of the ezetimibe intermediate.
Collapse
Affiliation(s)
- Xiao-Jian Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Rong Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Di Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Qun Tang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Meng-Ying Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
6
|
Nies SC, Alter TB, Nölting S, Thiery S, Phan ANT, Drummen N, Keasling JD, Blank LM, Ebert BE. High titer methyl ketone production with tailored Pseudomonas taiwanensis VLB120. Metab Eng 2020; 62:84-94. [PMID: 32810591 DOI: 10.1016/j.ymben.2020.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/13/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Methyl ketones present a group of highly reduced platform chemicals industrially produced from petroleum-derived hydrocarbons. They find applications in the fragrance, flavor, pharmacological, and agrochemical industries, and are further discussed as biodiesel blends. In recent years, intense research has been carried out to achieve sustainable production of these molecules by re-arranging the fatty acid metabolism of various microbes. One challenge in the development of a highly productive microbe is the high demand for reducing power. Here, we engineered Pseudomonas taiwanensis VLB120 for methyl ketone production as this microbe has been shown to sustain exceptionally high NAD(P)H regeneration rates. The implementation of published strategies resulted in 2.1 g Laq-1 methyl ketones in fed-batch fermentation. We further increased the production by eliminating competing reactions suggested by metabolic analyses. These efforts resulted in the production of 9.8 g Laq-1 methyl ketones (corresponding to 69.3 g Lorg-1 in the in situ extraction phase) at 53% of the maximum theoretical yield. This represents a 4-fold improvement in product titer compared to the initial production strain and the highest titer of recombinantly produced methyl ketones reported to date. Accordingly, this study underlines the high potential of P. taiwanensis VLB120 to produce methyl ketones and emphasizes model-driven metabolic engineering to rationalize and accelerate strain optimization efforts.
Collapse
Affiliation(s)
- Salome C Nies
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Tobias B Alter
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Sophia Nölting
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Susanne Thiery
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - An N T Phan
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Noud Drummen
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark; Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA; Virtual Institute of Microbial Stress and Survival, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Dept. of Bioengineering, University of California, Berkeley, CA, 94720, USA; Dept. of Chemical Engineering, University of California, Berkeley, CA, 94720, USA; Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Lars M Blank
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Birgitta E Ebert
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia.
| |
Collapse
|
7
|
Yan Q, Simmons TR, Cordell WT, Hernández Lozada NJ, Breckner CJ, Chen X, Jindra MA, Pfleger BF. Metabolic engineering of β-oxidation to leverage thioesterases for production of 2-heptanone, 2-nonanone and 2-undecanone. Metab Eng 2020; 61:335-343. [PMID: 32479802 DOI: 10.1016/j.ymben.2020.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 01/06/2023]
Abstract
Medium-chain length methyl ketones are potential blending fuels due to their cetane numbers and low melting temperatures. Biomanufacturing offers the potential to produce these molecules from renewable resources such as lignocellulosic biomass. In this work, we designed and tested metabolic pathways in Escherichia coli to specifically produce 2-heptanone, 2-nonanone and 2-undecanone. We achieved substantial production of each ketone by introducing chain-length specific acyl-ACP thioesterases, blocking the β-oxidation cycle at an advantageous reaction, and introducing active β-ketoacyl-CoA thioesterases. Using a bioprospecting approach, we identified fifteen homologs of E. coli β-ketoacyl-CoA thioesterase (FadM) and evaluated the in vivo activity of each against various chain length substrates. The FadM variant from Providencia sneebia produced the most 2-heptanone, 2-nonanone, and 2-undecanone, suggesting it has the highest activity on the corresponding β-ketoacyl-CoA substrates. We tested enzyme variants, including acyl-CoA oxidases, thiolases, and bi-functional 3-hydroxyacyl-CoA dehydratases to maximize conversion of fatty acids to β-keto acyl-CoAs for 2-heptanone, 2-nonanone, and 2-undecanone production. In order to address the issue of product loss during fermentation, we applied a 20% (v/v) dodecane layer in the bioreactor and built an external water cooling condenser connecting to the bioreactor heat-transferring condenser coupling to the condenser. Using these modifications, we were able to generate up to 4.4 g/L total medium-chain length methyl ketones.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Trevor R Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - William T Cordell
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Néstor J Hernández Lozada
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christian J Breckner
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xuanqi Chen
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Michael A Jindra
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
8
|
Zhang XJ, Zheng L, Wu D, Zhou R, Liu ZQ, Zheng YG. Production of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using carbonyl reductase coupled with glucose dehydrogenase with high space-time yield. Biotechnol Prog 2019; 36:e2900. [PMID: 31486281 DOI: 10.1002/btpr.2900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 11/09/2022]
Abstract
tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate ((3R,5S)-CDHH) is an important chiral intermediate for the synthesis of rosuvastatin. The biotechnological production of (3R,5S)-CDHH is catalyzed from tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) by a carbonyl reductase, and this synthetic pathway is becoming a primary route for (3R,5S)-CDHH production due to its high enantioselectivity, mild reaction conditions, low cost, process safety, and environmental friendship. However, the requirement of the pyridine nucleotide cofactors, reduced nicotinamide adenine dinucleotide (NADH) or reduced nicotinamide adenine dinucleotide phosphate (NADPH) limits its economic flexibility. In the present study, a recombinant Escherichia coli strain harboring carbonyl reductase R9M and glucose dehydrogenase (GDH) was constructed with high carbonyl reduction activity and cofactor regeneration efficiency. The recombinant E. coli cells were applied for the efficient production of (3R,5S)-CDHH with a substrate conversion of 98.8%, a yield of 95.6% and an enantiomeric excess (e.e.) of >99.0% under 350 g/L of (S)-CHOH after 12 hr reaction. A substrate fed-batch strategy was further employed to increase the substrate concentration to 400 g/L resulting in an enhanced product yield to 98.5% after 12 hr reaction in a 1 L bioreactor. Meanwhile, the space-time yield was 1,182.3 g L-1 day-1 , which was the highest value ever reported by a coupled system of carbonyl reductase and glucose dehydrogenase.
Collapse
Affiliation(s)
- Xiao-Jian Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ling Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Di Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Rong Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
9
|
Herbert RA, Eng T, Martinez U, Wang B, Langley S, Wan K, Pidatala V, Hoffman E, Chen JC, Bissell MJ, Brown JB, Mukhopadhyay A, Mortimer JC. Rhizobacteria Mediate the Phytotoxicity of a Range of Biorefinery-Relevant Compounds. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1911-1922. [PMID: 31107972 PMCID: PMC6711798 DOI: 10.1002/etc.4501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/10/2019] [Accepted: 05/15/2019] [Indexed: 05/08/2023]
Abstract
Advances in engineering biology have expanded the list of renewable compounds that can be produced at scale via biological routes from plant biomass. In most cases, these chemical products have not been evaluated for effects on biological systems, defined in the present study as bioactivity, that may be relevant to their manufacture. For sustainable chemical and fuel production, the industry needs to transition from fossil to renewable carbon sources, resulting in unprecedented expansion in the production and environmental distribution of chemicals used in biomanufacturing. Further, although some chemicals have been assessed for mammalian toxicity, environmental and agricultural hazards are largely unknown. We assessed 6 compounds that are representative of the emerging biofuel and bioproduct manufacturing process for their effect on model plants (Arabidopsis thaliana, Sorghum bicolor) and show that several alter plant seedling physiology at submillimolar concentrations. However, these responses change in the presence of individual bacterial species from the A. thaliana root microbiome. We identified 2 individual microbes that change the effect of chemical treatment on root architecture and a pooled microbial community with different effects relative to its constituents individually. The present study indicates that screening industrial chemicals for bioactivity on model organisms in the presence of their microbiomes is important for biologically and ecologically relevant risk analyses. Environ Toxicol Chem 2019;38:1911-1922. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Robin A. Herbert
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
- Joint BioEnergy Institute, EmeryvilleCaliforniaUSA
| | - Thomas Eng
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
- Joint BioEnergy Institute, EmeryvilleCaliforniaUSA
| | - Uriel Martinez
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
- College of Science and EngineeringSan Francisco State University, San FranciscoCaliforniaUSA
| | - Brenda Wang
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
| | - Sasha Langley
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
| | - Kenneth Wan
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
| | - Venkataramana Pidatala
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
- Joint BioEnergy Institute, EmeryvilleCaliforniaUSA
| | - Elijah Hoffman
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
| | - Joseph C. Chen
- College of Science and EngineeringSan Francisco State University, San FranciscoCaliforniaUSA
| | - Mina J. Bissell
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
| | - James B. Brown
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
- Environmental Genomics and System Biology DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
- Joint BioEnergy Institute, EmeryvilleCaliforniaUSA
- Environmental Genomics and System Biology DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
| | - Jenny C. Mortimer
- Biological Systems and Engineering DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
- Joint BioEnergy Institute, EmeryvilleCaliforniaUSA
- Environmental Genomics and System Biology DivisionBiosciences Area, Lawrence Berkeley National Laboratory, BerkeleyCaliforniaUSA
| |
Collapse
|
10
|
Opgenorth P, Costello Z, Okada T, Goyal G, Chen Y, Gin J, Benites V, de Raad M, Northen TR, Deng K, Deutsch S, Baidoo EEK, Petzold CJ, Hillson NJ, Garcia Martin H, Beller HR. Lessons from Two Design-Build-Test-Learn Cycles of Dodecanol Production in Escherichia coli Aided by Machine Learning. ACS Synth Biol 2019; 8:1337-1351. [PMID: 31072100 DOI: 10.1021/acssynbio.9b00020] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Design-Build-Test-Learn (DBTL) cycle, facilitated by exponentially improving capabilities in synthetic biology, is an increasingly adopted metabolic engineering framework that represents a more systematic and efficient approach to strain development than historical efforts in biofuels and biobased products. Here, we report on implementation of two DBTL cycles to optimize 1-dodecanol production from glucose using 60 engineered Escherichia coli MG1655 strains. The first DBTL cycle employed a simple strategy to learn efficiently from a relatively small number of strains (36), wherein only the choice of ribosome-binding sites and an acyl-ACP/acyl-CoA reductase were modulated in a single pathway operon including genes encoding a thioesterase (UcFatB1), an acyl-ACP/acyl-CoA reductase (Maqu_2507, Maqu_2220, or Acr1), and an acyl-CoA synthetase (FadD). Measured variables included concentrations of dodecanol and all proteins in the engineered pathway. We used the data produced in the first DBTL cycle to train several machine-learning algorithms and to suggest protein profiles for the second DBTL cycle that would increase production. These strategies resulted in a 21% increase in dodecanol titer in Cycle 2 (up to 0.83 g/L, which is more than 6-fold greater than previously reported batch values for minimal medium). Beyond specific lessons learned about optimizing dodecanol titer in E. coli, this study had findings of broader relevance across synthetic biology applications, such as the importance of sequencing checks on plasmids in production strains as well as in cloning strains, and the critical need for more accurate protein expression predictive tools.
Collapse
Affiliation(s)
- Paul Opgenorth
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zak Costello
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
| | - Takuya Okada
- Research Institute for Bioscience Product & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8680, Japan
| | - Garima Goyal
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
| | - Yan Chen
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
| | - Jennifer Gin
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
| | - Veronica Benites
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
| | - Markus de Raad
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Joint Genome Institute, Walnut Creek, California 94598, United States
| | - Trent R. Northen
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Joint Genome Institute, Walnut Creek, California 94598, United States
| | - Kai Deng
- Sandia National Laboratories, Livermore, California 94550, United States
| | - Samuel Deutsch
- DOE Joint Genome Institute, Walnut Creek, California 94598, United States
| | - Edward E. K. Baidoo
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
| | - Christopher J. Petzold
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
| | - Nathan J. Hillson
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
- DOE Joint Genome Institute, Walnut Creek, California 94598, United States
| | - Hector Garcia Martin
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE Agile BioFoundry, Emeryville, California 94608, United States
- BCAM, Basque Center for Applied Mathematics, 48009 Bilbao, Spain
| | - Harry R. Beller
- Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Dong J, Chen Y, Benites VT, Baidoo EEK, Petzold CJ, Beller HR, Eudes A, Scheller HV, Adams PD, Mukhopadhyay A, Simmons BA, Singer SW. Methyl ketone production by Pseudomonas putida is enhanced by plant-derived amino acids. Biotechnol Bioeng 2019; 116:1909-1922. [PMID: 30982958 DOI: 10.1002/bit.26995] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/13/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023]
Abstract
Plants are an attractive sourceof renewable carbon for conversion to biofuels and bio-based chemicals. Conversion strategies often use a fraction of the biomass, focusing on sugars from cellulose and hemicellulose. Strategies that use plant components, such as aromatics and amino acids, may improve the efficiency of biomass conversion. Pseudomonas putida is a promising host for its ability to metabolize a wide variety of organic compounds. P. putida was engineered to produce methyl ketones, which are promising diesel blendstocks and potential platform chemicals, from glucose and lignin-related aromatics. Unexpectedly, P. putida methyl ketone production using Arabidopsis thaliana hydrolysates was enhanced 2-5-fold compared with sugar controls derived from engineered plants that overproduce lignin-related aromatics. This enhancement was more pronounced (~seven-fold increase) with hydrolysates from nonengineered switchgrass. Proteomic analysis of the methyl ketone-producing P. putida suggested that plant-derived amino acids may be the source of this enhancement. Mass spectrometry-based measurements of plant-derived amino acids demonstrated a high correlation between methyl ketone production and amino acid concentration in plant hydrolysates. Amendment of glucose-containing minimal media with a defined mixture of amino acids similar to those found in the hydrolysates studied led to a nine-fold increase in methyl ketone titer (1.1 g/L).
Collapse
Affiliation(s)
- Jie Dong
- Joint BioEnergy Institute, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Veronica Teixeira Benites
- Joint BioEnergy Institute, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Harry R Beller
- Joint BioEnergy Institute, Emeryville, California.,Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Aymerick Eudes
- Joint BioEnergy Institute, Emeryville, California.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, California.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, California.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, California.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
12
|
Yan Q, Pfleger BF. Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 2019; 58:35-46. [PMID: 31022535 DOI: 10.1016/j.ymben.2019.04.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/20/2019] [Accepted: 04/21/2019] [Indexed: 02/06/2023]
Abstract
Microbial production of oleochemicals from renewable feedstocks remains an attractive route to produce high-energy density, liquid transportation fuels and high-value chemical products. Metabolic engineering strategies have been applied to demonstrate production of a wide range of oleochemicals, including free fatty acids, fatty alcohols, esters, olefins, alkanes, ketones, and polyesters in both bacteria and yeast. The majority of these demonstrations synthesized products containing long-chain fatty acids. These successes motivated additional effort to produce analogous molecules comprised of medium-chain fatty acids, molecules that are less common in natural oils and therefore of higher commercial value. Substantial progress has been made towards producing a subset of these chemicals, but significant work remains for most. The other primary challenge to producing oleochemicals in microbes is improving the performance, in terms of yield, rate, and titer, of biocatalysts such that economic large-scale processes are feasible. Common metabolic engineering strategies include blocking pathways that compete with synthesis of oleochemical building blocks and/or consume products, pulling flux through pathways by removing regulatory signals, pushing flux into biosynthesis by overexpressing rate-limiting enzymes, and engineering cells to tolerate the presence of oleochemical products. In this review, we describe the basic fundamentals of oleochemical synthesis and summarize advances since 2013 towards improving performance of heterotrophic microbial cell factories.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI 53706, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|