1
|
Wittkopp F, Welsh J, Todd R, Staby A, Roush D, Lyall J, Karkov S, Hunt S, Griesbach J, Bertran MO, Babi D. Current state of implementation of in silico tools in the biopharmaceutical industry-Proceedings of the 5th modeling workshop. Biotechnol Bioeng 2024; 121:2952-2973. [PMID: 38853778 DOI: 10.1002/bit.28768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
The fifth modeling workshop (5MW) was held in June 2023 at Favrholm, Denmark and sponsored by Recovery of Biological Products Conference Series. The goal of the workshop was to assemble modeling practitioners to review and discuss the current state, progress since the last fourth mini modeling workshop (4MMW), gaps and opportunities for development, deployment and maintenance of models in bioprocess applications. Areas of focus were four categories: biophysics and molecular modeling, mechanistic modeling, computational fluid dynamics (CFD) and plant modeling. Highlights of the workshop included significant advancements in biophysical/molecular modeling to novel protein constructs, mechanistic models for filtration and initial forays into modeling of multiphase systems using CFD for a bioreactor and mapped strategically to cell line selection/facility fit. A significant impediment to more fully quantitative and calibrated models for biophysics is the lack of large, anonymized datasets. A potential solution would be the use of specific descriptors in a database that would allow for detailed analyzes without sharing proprietary information. Another gap identified was the lack of a consistent framework for use of models that are included or support a regulatory filing beyond the high-level guidance in ICH Q8-Q11. One perspective is that modeling can be viewed as a component or precursor of machine learning (ML) and artificial intelligence (AI). Another outcome was alignment on a key definition for "mechanistic modeling." Feedback from participants was that there was progression in all of the fields of modeling within scope of the conference. Some areas (e.g., biophysics and molecular modeling) have opportunities for significant research investment to realize full impact. However, the need for ongoing research and development for all model types does not preclude the application to support process development, manufacturing and use in regulatory filings. Analogous to ML and AI, given the current state of the four modeling types, a prospective investment in educating inter-disciplinary subject matter experts (e.g., data science, chromatography) is essential to advancing the modeling community.
Collapse
Affiliation(s)
- Felix Wittkopp
- Roche Diagnostics GmbH, Gene Therapy Technical Development, Penzberg, Germany
| | - John Welsh
- Rivanna Bioprocess Solutions, Charlottesville, Virginia, USA
| | - Robert Todd
- Digital Process Design, Boulder, Colorado, USA
| | - Arne Staby
- CMC Development, Novo Nordisk, Bagsværd, Denmark
| | - David Roush
- Roush Biopharma Panacea, Colts Neck, New Jersey, USA
| | - Jessica Lyall
- Purification Development, Genentech, South San Francisco, California, USA
| | - Sophie Karkov
- Purification Research, Global Research Technologies, Novo Nordisk, Måløv, Denmark
| | - Stephen Hunt
- Allogene Therapeutics, Inc., South San Francisco, California, USA
| | | | - Maria-Ona Bertran
- Product Supply API Manufacturing Development, Novo Nordisk, Bagsværd, Denmark
| | - Deenesh Babi
- Product Supply API Manufacturing Development, Novo Nordisk, Bagsværd, Denmark
| |
Collapse
|
2
|
Mo R, Guo W, Batstone D, Makinia J, Li Y. Modifications to the anaerobic digestion model no. 1 (ADM1) for enhanced understanding and application of the anaerobic treatment processes - A comprehensive review. WATER RESEARCH 2023; 244:120504. [PMID: 37634455 DOI: 10.1016/j.watres.2023.120504] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Anaerobic digestion (AD) is a promising method for the recovery of resources and energy from organic wastes. Correspondingly, AD modelling has also been developed in recent years. The International Water Association (IWA) Anaerobic Digestion Model No. 1 (ADM1) is currently the most commonly used structured AD model. However, as substrates become more complex and our understanding of the AD mechanism grows, both systematic and specific modifications have been applied to the ADM1. Modified models have provided a diverse range of application besides AD processes, such as fermentation and biogas upgrading processes. This paper reviews research on the modification of the ADM1, with a particular focus on processes, kinetics, stoichiometry and parameters, which are the major elements of the model. The paper begins with a brief introduction to the ADM1, followed by a summary of modifications, including extensions to the model structure, modifications to kinetics (including inhibition functions) and stoichiometry, as well as simplifications to the model. The paper also covers kinetic parameter estimation and validation of the model, as well as practical applications of the model to a variety of scenarios. The review highlights the need for improvements in simulating AD and biogas upgrading processes, as well as the lack of full-scale applications to other substrates besides sludge (such as food waste and agricultural waste). Future research directions are suggested for model development based on detailed understanding of the anaerobic treatment mechanisms, and the need to recover of valuable products.
Collapse
Affiliation(s)
- Rongrong Mo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenjie Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Damien Batstone
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, Gdansk 80-233, Poland
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Monje V, Nobel P, Junicke H, Kjellberg K, Gernaey KV, Flores-Alsina X. Assessment of alkaline stabilization processes in industrial waste streams using a model-based approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112806. [PMID: 34029977 DOI: 10.1016/j.jenvman.2021.112806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Chemical conditioning prior to disposal is a common practice in biotech companies to stabilize the biological waste generated during production. Nevertheless, the state of the art models used to analyze management strategies in water treatment systems (WTS) do not include the effect of high alkaline conditions during bio-solids processing. In this paper, the prediction capabilities of a novel model-based approach describing the effect of quicklime addition (CaO) on the waste streams of an industrial WTS is assessed. Two measuring campaigns were carried out taking samples of TSS, VSS and total/soluble COD, N, P, S and multiple metals before and after chemical stabilization, and dewatering under and overflow. Mass balances were set up and Sankey diagrams were generated to represent the occurrence, transformation and fate of the major compounds within the studied facility. A simulation model was used to predict plant at different locations. Next, a scenario analysis was carried out in order to assess potential alternatives to the current operational practice. The resulting mass balances show a mismatch between the system's input and output up to 17%. It was also possible to identify different types of compound-behavior depending on the effect that high pH induced on the soluble and particulate fractions: hydrolysis, precipitation and unaltered. Model predictions and measurements differed 9.6% (steady state) and 12.4% (dynamic state) respectively. Finally, in the scenario analysis, the model suggested that the change from quicklime to sodium hydroxide (NaOH) would increase the quantity of organics in the dewatered cake (+23%), but with a considerable increase in chemical consumption (+50%). The selective stabilization of the incoming streams has the lowest use of chemicals (-30%) and reduces the load of CODsol (-13%) and TNsol (-14%) recirculated to the water line of the WWTP.
Collapse
Affiliation(s)
- Vicente Monje
- Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark. Building, 229, DK-2800, Kgs. Lyngby, Denmark.
| | - Per Nobel
- Novozymes A/S, Hallas Alle 1, DK-4400, Kalundborg, Denmark.
| | - Helena Junicke
- Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark. Building, 229, DK-2800, Kgs. Lyngby, Denmark.
| | | | - Krist V Gernaey
- Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark. Building, 229, DK-2800, Kgs. Lyngby, Denmark.
| | - Xavier Flores-Alsina
- Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark. Building, 229, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Digital Twin in biomanufacturing: challenges and opportunities towards its implementation. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s43393-021-00024-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Flores-Alsina X, Ramin E, Ikumi D, Harding T, Batstone D, Brouckaert C, Sotemann S, Gernaey KV. Assessment of sludge management strategies in wastewater treatment systems using a plant-wide approach. WATER RESEARCH 2021; 190:116714. [PMID: 33307375 DOI: 10.1016/j.watres.2020.116714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
The objective of this paper is to use plant-wide modeling to assess the net impacts of varying sludge management strategies. Special emphasis is placed on effluent quality, operational cost and potential resource recovery (energy, nutrients). The study is particularly focused on a centralized bio-solids beneficiation facility (BBF), which enables larger, more capital intensive sludge management strategies. Potential barriers include the ability to process reject streams from multiple donor plants in the host plant. Cape Flats (CF) wastewater treatment works (WWTW) (Cape Town, South Africa) was used as a relevant test case since it is currently assessing to process sludge cake from three nearby facilities (Athlone, Mitchells Plain and Wildevoelvlei). A plant-wide model based on the Benchmark Simulation Model no 2 (BSM2) extended with phosphorus transformations was adapted to the CF design / operational conditions. Flow diagram and model parameters were adjusted to reproduce the influent, effluent and process characteristics. Historical data between January 2014 and December 2019 was used to compare full-scale measurements and predictions. Next, different process intensification / mitigation technologies were evaluated using multiple criteria. Simulation values for COD, TSS, VSS/TSS ratio, TN, TP, NH4+/NH3, HxPO43-x, NOx alkalinity and pH fall within the interquartile ranges of measured data. The effects of the 2017 severe drought on influent variations and biological phosphorus removal are successfully reproduced for the entire period with dynamic simulations. Indeed, 80% of all dynamically simulated values are included within the plant measurement uncertainty ranges. Sludge management analysis reveals that flow diagrams with thermal hydrolysis pre-treatment (THP) result in a better energy balance in spite of having higher heat demands. The flow diagram with THP is able to i) increase biodegradability/solubility, ii) handle higher sludge loads, iii) change methanogenic microbial population and iv) generate lower solids volumes to dispose by improving sludge dewaterability. The study also reveals the importance of including struvite precipitation and harvesting (SPH) technology, and the effect that pH in the AD and the use of chemicals (NaOH, MgO) may have on phosphorus recovery. Model-based results indicate that the current aerobic volume in the water line (if properly aerated) would be able to handle the returns from the sludge line and the contribution of a granular partial nitritation/Anammox (PN/ANX) reactor on the overall nitrogen removal would be marginal. However autotrophic N denitrification generates a much lower sludge production and therefore increases AD treatment capacity. The study shows for the very first time in Africa how the use of a (calibrated) plant-wide model could assist water utilities to decide between competing plant layouts when upgrading a WWTW.
Collapse
Affiliation(s)
- Xavier Flores-Alsina
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Elham Ramin
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - David Ikumi
- Department of Civil Engineering, University of Cape Town, Rondebosh, South Africa
| | - Theo Harding
- Department of Civil Engineering, University of Cape Town, Rondebosh, South Africa
| | - Damien Batstone
- Advanced Water Management Center, University of Queensland, Brisbane, Australia
| | - Chris Brouckaert
- Department of Chemical Engineering, University of KwaZulu Natal, Durban, South Africa
| | - Sven Sotemann
- Department of Water and Sanitation, City of Cape Town, Cape Town, South Africa
| | - Krist V Gernaey
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Silva Neto JVD, Elaiuy MLC, Nour EAA. ADM1 approach to the performance optimisation and biogas H 2S prediction of a large-scale anaerobic reactor fed on sugarcane vinasse. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1774-1786. [PMID: 32039909 DOI: 10.2166/wst.2019.434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this paper, we present extensions to the Anaerobic Digestion Model No. 1 (ADM1) to simulate hydrogen sulphide in biogas and solids retention efficiency. The extended model was calibrated and validated against data from a large-scale covered in-ground anaerobic reactor (CIGAR), processing sugarcane vinasse. Comparative scenarios and set-ups of a CIGAR with and without a settling tank unit (settler) were simulated to investigate the reactor's performance. Biogas flow, methane content, and yield with settler were 15,983 Nm3/d, 57%, and 0.198 Nm3CH4/kgCOD, respectively, which were 9.4%, 1.8%, and 11.64%, higher than without the settler. Improvements are combination of influent flow rate 116% higher and increased solids retention time by using a settler. The optimised modelled reactor, the volume of which was reduced by 50%, was able to produce 83% more methane per volume of reactor with half the retention time. After model calibration and validation, we assessed the quality of predictions and its utility. The overall quality of predictions was assessed as high accuracy quantitative for CH4 and medium for H2S and biogas flow. A practical demonstration of ADM1 to industrial application is presented here to identify the potential optimisation and behaviour of a large-scale anaerobic reactor, reducing, consequently, expenditure, risk, and time.
Collapse
Affiliation(s)
- Jorge Vinicius da Silva Neto
- Energy Systems Planning Program, Faculty of Mechanical Engineering, University of Campinas, Av. Julio de Mesquita, 249/131, Campinas, Sāo Paulo, Brazil E-mail:
| | - Marcelo Leite Conde Elaiuy
- Department of Civil, Environmental & Geomatic Engineering, Centre for Resource Efficiency & the Environment (CREE), University College London, Chadwick Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Edson Aparecido Abdul Nour
- School of Civil Engineering, Architecture and Urban Design University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
7
|
Dereli RK. Modeling long-term performance of full-scale anaerobic expanded granular sludge bed reactor treating confectionery industry wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25037-25045. [PMID: 31250395 DOI: 10.1007/s11356-019-05739-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Production and consumption of confectionery products, such as chocolate, sugar, and cookies, have increased worldwide. Thus, management and treatment of confectionery effluents, as one of the most important agro-industrial wastewaters, become essential. Confectionery industries produce high-strength and highly biodegradable wastewaters that are appropriate for biological treatment prior to discharge. In this study, long-term dynamic performance of a full-scale anaerobic expanded granular sludge bed (EGSB) reactor treating confectionery effluent was simulated by using Anaerobic Digestion Model No. 1 (ADM1). Substrate fractionation was carried out based on the ADM1 state variables, and then, the model was calibrated with 300 days of operation data. The calibrated model could capture the dynamic performance of the anaerobic reactor for a long validation period of 500 days. Although the reactor was operated under highly fluctuating volumetric loading rates (VLR) between 0.2 and 5 kg chemical oxygen demand (COD)/m3 day, the model results indicated medium to high prediction accuracy for effluent COD, methane generation, total volatile fatty acids (VFA), and pH parameters. Mean relative absolute errors for COD, methane flow, VFA, and pH parameter simulations were 22%, 16%, 29%, and 1%, respectively. The study presents the applicability of ADM1 for full-scale reactors treating industrial wastewaters.
Collapse
Affiliation(s)
- Recep Kaan Dereli
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
- Civil Engineering Faculty, Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
8
|
Flores-Alsina X, Feldman H, Monje VT, Ramin P, Kjellberg K, Jeppsson U, Batstone DJ, Gernaey KV. Evaluation of anaerobic digestion post-treatment options using an integrated model-based approach. WATER RESEARCH 2019; 156:264-276. [PMID: 30925373 DOI: 10.1016/j.watres.2019.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The objective of this paper is to present the main results of an engineering-research project dealing with model-based evaluation of waste streams treatment from a biotech company. This has been extensively done in domestic treatment systems, but is equally important, and with different challenges in industrial wastewater treatment. A new set of biological (activated sludge, anaerobic digestion), physicochemical (aqueous phase, precipitation, mass transfer) process models and model interfaces are required to describe removal of organics in an upflow anaerobic sludge blanket (UASB) reactor plus either traditional nitrification/denitrification (A1) or partial nitritation (PN)/anammox (ANX) (A2) processes. Model-based analysis shows that option A1 requires a decrease in digestion energy recovery (Erecovery) in order to have enough organic substrate for subsequent post NO3 reduction treatment (95 kWh.kg N-1). In contrast, A2 in an aerobic granular sludge reactor allows for higher UASB conversion since N removal is carried out autotrophically. The study also reveals that the addition of an aerated pre-treatment unit prior to the PN/ANX (A2) reactor promotes COD and H2S oxidation, CO2 and CH4 stripping, a pH increase (up to 8.5) and a reduction of the risk of intra-granular precipitation as well as sulfide inhibition. Simulations indicate clear differences regarding the microbial distribution/abundance within the biofilm in A2 when comparing the two operational modes. Final results show the effects of different loading and operational conditions; dissolved oxygen (DO), Total Suspended Solids (TSSop), energy recovery (Erecovery); on the overall process performance; N removal, aeration energy (Eaeration), net energy production (Erecovery); using response surfaces, highlighting the need of integrated approaches to avoid sub-optimal outcomes. The study shows the benefits of virtual plant simulation and demonstrates the potential of model-based evaluation when process engineers in industry have to decide between competing options.
Collapse
Affiliation(s)
- X Flores-Alsina
- Process and Systems Engineering Centr (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building, 229, DK-2800 Kgs. Lyngby, Denmark.
| | - H Feldman
- Process and Systems Engineering Centr (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building, 229, DK-2800 Kgs. Lyngby, Denmark
| | - V T Monje
- Process and Systems Engineering Centr (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building, 229, DK-2800 Kgs. Lyngby, Denmark
| | - P Ramin
- Process and Systems Engineering Centr (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building, 229, DK-2800 Kgs. Lyngby, Denmark
| | - K Kjellberg
- Novozymes A/S, Hallas Alle 1, DK-4400 Kalundborg, Denmark
| | - U Jeppsson
- Division of Industrial Electrical Engineering and Automation, Department of Biomedical Engineering, Lund University, Box 118, SE-221 00, Lund, Sweden
| | - D J Batstone
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - K V Gernaey
- Process and Systems Engineering Centr (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building, 229, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
9
|
Feldman H, Flores-Alsina X, Ramin P, Kjellberg K, Jeppsson U, Batstone DJ, Gernaey KV. Assessing the effects of intra-granule precipitation in a full-scale industrial anaerobic digester. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:1327-1337. [PMID: 31123232 DOI: 10.2166/wst.2019.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, a multi-scale model is used to assess the multiple mineral precipitation potential in a full-scale anaerobic granular sludge system. Reactor behaviour is analysed under different operational conditions (addition/no addition of reject water from dewatering of lime-stabilized biomass) and periods of time (short/long term). Model predictions suggest that a higher contribution of reject water promotes the risk of intra-granule CaCO3 formation as a result of the increased quantity of calcium arriving with that stream combined with strong pH gradients within the biofilm. The distribution of these precipitates depends on: (i) reactor height; and (ii) granule size. The study also exposes the potential undesirable effects of the long-term addition of reject water (a decrease in energy recovery of 20% over a 100-day period), caused by loss in biomass activity (due to microbial displacement), and the reduced buffer capacity. This demonstrates how both short-term and long-term operational conditions may affect the formation of precipitates within anaerobic granules, and how it may influence methane production and consequently energy recovery.
Collapse
Affiliation(s)
- H Feldman
- Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, DK-2800 Kgs, Lyngby, Denmark E-mail:
| | - X Flores-Alsina
- Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, DK-2800 Kgs, Lyngby, Denmark E-mail:
| | - P Ramin
- Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, DK-2800 Kgs, Lyngby, Denmark E-mail:
| | - K Kjellberg
- Novozymes A/S, Hallas Alle 1, DK-4400 Kalundborg, Denmark
| | - U Jeppsson
- Division of Industrial Electrical Engineering and Automation, Department of Biomedical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - D J Batstone
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - K V Gernaey
- Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, DK-2800 Kgs, Lyngby, Denmark E-mail:
| |
Collapse
|