1
|
Ye Y, Liu H, Wang Z, Qi Q, Du J, Tian S. A cellulosomal yeast reaction system of lignin-degrading enzymes for cellulosic ethanol fermentation. Biotechnol Lett 2024; 46:531-543. [PMID: 38607604 DOI: 10.1007/s10529-024-03485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Biofuel production from lignocellulose feedstocks is sustainable and environmentally friendly. However, the lignocellulosic pretreatment could produce fermentation inhibitors causing multiple stresses and low yield. Therefore, the engineering construction of highly resistant microorganisms is greatly significant. In this study, a composite functional chimeric cellulosome equipped with laccase, versatile peroxidase, and lytic polysaccharide monooxygenase was riveted on the surface of Saccharomyces cerevisiae to construct a novel yeast strain YI/LVP for synergistic lignin degradation and cellulosic ethanol production. The assembly of cellulosome was assayed by immunofluorescence microscopy and flow cytometry. During the whole process of fermentation, the maximum ethanol concentration and cellulose conversion of engineering strain YI/LVP reached 8.68 g/L and 83.41%, respectively. The results proved the availability of artificial chimeric cellulosome containing lignin-degradation enzymes for cellulosic ethanol production. The purpose of the study was to improve the inhibitor tolerance and fermentation performance of S. cerevisiae through the construction and optimization of a synergistic lignin-degrading enzyme system based on cellulosome.
Collapse
Affiliation(s)
- Yutong Ye
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Han Liu
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Zhipeng Wang
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Qi Qi
- Beijing Chaoyang Foreign Language School, Beijing, 100012, China
| | - Jiliang Du
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Shen Tian
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
2
|
Bankole PO, Omoni VT, Tennison-Omovoh CA, Adebajo SO, Mulla SI. Enhanced removal of dibutyl phthalate in a laccase-mediator system: Optimized process parameters, kinetics, and environmental impact. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119227. [PMID: 37820431 DOI: 10.1016/j.jenvman.2023.119227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/02/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The persistence and recalcitrance of endocrine-disrupting chemicals (EDCs) in the environment have raised momentous concerns due to their carcinogenic, teratogenic, genotoxic, and cytotoxic effects on humans, animals, and plants. Unarguably, dibutyl phthalate (DBP) is one of the most ubiquitous EDCs because of its bioavailability in water, soil, and atmosphere. This study aims to investigate the efficiency of Agaricus bisporus laccase in the degradation of dibutyl phthalate (DBP) in laccase-mediator system. Here, enhanced removal efficiency was recorded during DBP degradation in laccase-mediator systems than in reaction medium containing laccase only. About 98.85% of 30 mg L-1 DBP was efficiently removed in a medium containing 1.3 U mL-1, 0.045 mM Syringaldehyde (SYR) at incubation temperature 30 aC and pH 5 within 24 h. This finding was further corroborated by the synergistic interplay of the optimal parameters in the laccase-SYR system done using response surface methodology (Box-Behnken Design). Furthermore, the addition of 1.5 mM of metal ions in the laccase-SYR system further promoted the enhanced removal of DBP in the following order: Cr3+> Pb2+> Ca2+> Al3+>Zn2+ > Cu2+. A significant decrease in DBP degradation was observed at higher concentrations of metal ions above 1.5 mM due to the inhibition of laccase active sites. The coefficient of correlation (R2 = 0.9885) recorded in the Lineweaver bulk plot affirmed that the removal efficiencies are highly dependent on DBP concentration in the laccase-SYR system. The Gas-Chromatography Mass Spectrometry (GC-MS) analyses affirmed that the ortho-cleavage due to hydrolysis of DBP in the reaction system led to the formation of two metabolic degradation products (MBP and PA). The phytotoxicity assessment affirmed the detoxified status of DBP after treatment with significant improvement (90 and 91%) in the growth of Lens culinaris and Sorghum bicolor. This is the first report on DBP degradation in the laccase-SYR reaction system, underscoring the unique, eco-friendly, economical, and promising alternative to known conventional methods.
Collapse
Affiliation(s)
- Paul Olusegun Bankole
- Department of Pure and Applied Botany, College of Biosciences, Federal University of Agriculture P.M.B. 2240 Abeokuta, Ogun State, Nigeria; Environmental Microbiology Group, Institute of Water Research, University of Granada, Calle Ramón y Cajal 4, E-18071 Granada, Spain.
| | | | | | - Seun Owolabi Adebajo
- Department of Microbiology, College of Biosciences, Federal University of Agriculture P.M.B. 2240 Abeokuta, Ogun State, Nigeria
| | - Sikandar Imamsab Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore 560064, India; Division of Biotechnology, Jeonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
3
|
Zhao Y, Yang J, Wu Y, Huang B, Xu L, Yang J, Liang B, Han L. Construction of bacterial laccase displayed on the microbial surface for ultrasensitive biosensing of phenolic pollutants with nanohybrids-enhanced performance. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131265. [PMID: 36989770 DOI: 10.1016/j.jhazmat.2023.131265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Although bacterial laccase (BLac) has many advantages including short fermentation period and adaptable activity to wide temperature and pH ranges, it is of challenge and significance to apply BLac to the biosensors, due to the intracellular secretion and poor electron transfer efficiency of BLac. Here, cell surface-displayed BLac (CSDBLac) was successfully constructed as whole-cell biocatalyst through microbial surface display technology, eliminating the mass transfer restriction and laborious purification steps. Meanwhile, MXenes/polyetherimide-multiwalled carbon nanotubes (MXenes/PEI-MWCNTs) nanohybrids were designed to immobilize CSDBLac and improve their electrochemical activity. Then, an electrochemical biosensor was successfully constructed to detect common phenolic pollutants (catechol and hydroquinone) by the co-immobilization of CSDBLac and MXenes/PEI-MWCNTs nanohybrids onto a glassy carbon electrode. Subsequently, it was successfully applied to the water samples assay with good reliability and repeatability. This work innovatively used BLac and nanohybrid as the core elements of biosensor, which not only effectively solved the application bottleneck of BLac on biosensors, but also dramatically promote the electro transfer efficiency between whole-cell biocatalyst and electrode. This method is of profound meanings for significantly improving the performance of phenolic biosensors and other biosensors from the origin.
Collapse
Affiliation(s)
- Yanfang Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Jing Yang
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Yuqing Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Baojian Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China
| | - Jianming Yang
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Bo Liang
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong, China.
| |
Collapse
|
4
|
Schmiemann D, Hohenschon L, Bartels I, Hermsen A, Bachmann F, Cordes A, Jäger M, Gutmann JS, Hoffmann-Jacobsen K. Enzymatic post-treatment of ozonation: laccase-mediated removal of the by-products of acetaminophen ozonation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53128-53139. [PMID: 36853537 PMCID: PMC10119220 DOI: 10.1007/s11356-023-25913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Ozonation is a powerful technique to remove micropollutants from wastewater. As chemical oxidation of wastewater comes with the formation of varying, possibly persistent and toxic by-products, post-treatment of the ozonated effluent is routinely suggested. This study explored an enzymatic treatment of ozonation products using the laccase from Trametes versicolor. A high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) analysis revealed that the major by-products were effectively degraded by the enzymatic post-treatment. The enzymatic removal of the by-products reduced the ecotoxicity of the ozonation effluent, as monitored by the inhibition of Aliivibrio fischeri. The ecotoxicity was more effectively reduced by enzymatic post-oxidation at pH 7 than at the activity maximum of the laccase at pH 5. A mechanistic HPLC-HRMS and UV/Vis spectroscopic analysis revealed that acidic conditions favored rapid conversion of the phenolic by-products to dead-end products in the absence of nucleophiles. In contrast, the polymerization to harmless insoluble polymers was favored at neutral conditions. Hence, coupling ozonation with laccase-catalyzed post-oxidation at neutral conditions, which are present in wastewater effluents, is suggested as a new resource-efficient method to remove persistent micropollutants while excluding the emission of potentially harmful by-products.
Collapse
Affiliation(s)
- Dorothee Schmiemann
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
- Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Lisa Hohenschon
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
- Wfk-Cleaning Technology-Institute e.V., Campus Fichtenhain 11, 47807, Krefeld, Germany
| | - Indra Bartels
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Andrea Hermsen
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
- Institute of Theoretical Chemistry, University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Felix Bachmann
- ASA Spezialenzyme GmbH, Am Exer 19C, 38302, Wolfenbüttel, Germany
| | - Arno Cordes
- ASA Spezialenzyme GmbH, Am Exer 19C, 38302, Wolfenbüttel, Germany
| | - Martin Jäger
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
| | - Jochen Stefan Gutmann
- Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, 47798, Krefeld, Germany
| | - Kerstin Hoffmann-Jacobsen
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany.
| |
Collapse
|
5
|
Guo F, Liu M, Liu H, Li C, Feng X. Direct Yeast Surface Codisplay of Sequential Enzymes with Complementary Anchor Motifs: Enabling Enhanced Glycosylation of Natural Products. ACS Synth Biol 2023; 12:460-470. [PMID: 36649530 DOI: 10.1021/acssynbio.2c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Yeast surface display is an appealing technique for constructing multienzyme cascades. This technique is commonly achieved using a scaffold for the ordered arrangement of various enzymes. However, this method is typically complicated because scaffold use may engender extra metabolic burden on the cell host. Here, we established a direct yeast surface codisplay strategy by employing two complementary anchor motifs, Agα1 and Pir1. These motifs allow for the codisplay of sequential uridine diphosphate-glycosyltransferase (UGT) and sucrose synthase (SUS) on the surface of Pichia pastoris (syn. Komagataella phaffii) for the glycosylation of natural products. We manipulated the displayed stoichiometry, amount, and assembly order of UGT and SUS by coupling them with anchor motifs. Furthermore, their effect on enzyme activity was thoroughly investigated. The surface-codisplayed strain UGT-Pir-SUS-Agα exhibited greater thermostability than the single-displayed strains and their free counterparts. Moreover, the strain UGT-Pir-SUS-Agα was successfully applied to glycyrrhetinic acid (GA) glycosylation to produce GA-3-O-Glc, with sucrose being the sugar donor in this process. This generated 7.5- to 20- and 5.3-fold higher GA-3-O-Glc concentration compared with the free counterparts (enzyme mass loading of 20-fold in excess) and mixed single-displayed strains of UGT-Agα and SUS-Pir, respectively. This increase was due to the improved biochemical properties and substrate channeling effect of strain UGT-Pir-SUS-Agα. This controllable direct surface codisplay strategy, based on complementary anchor motifs, is readily extendable to other enzyme cascades.
Collapse
Affiliation(s)
- Fang Guo
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Mingzhu Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Hu Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China.,Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
6
|
Dlamini ML, Lesaoana M, Kotze I, Richards HL. Zeolitic imidazolate frameworks as effective crystalline supports for aspergillus-based laccase immobilization for the biocatalytic degradation of carbamazepine. CHEMOSPHERE 2023; 311:137142. [PMID: 36347352 DOI: 10.1016/j.chemosphere.2022.137142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
In this study, zeolitic imidazolate frameworks (ZIF) were employed as effective porous supports for laccase enzyme attachment and further explored synergistic adsorption and biocatalytic degradation of carbamazepine (CBZ) in aqueous solutions. Characterization results from FTIR and NMR analysis confirmed successful incorporation of the laccase enzyme onto ZIF particles. Further analyses from SEM and TEM revealed rhombic dodecahedral morphologies of ZIF crystals with crusts of the enzyme observed on the particles' surface. The carbamazepine degradation results showed that immobilization of the laccase improved its stability and resistance at various pH's, in comparison to the free enzyme. The immobilized laccase also exhibited relatively higher activities across the studied temperature range compared to the free form. Kinetic studies revealed a negligible decline in velocity, Vmax after immobilization, evaluated to be 0.873 and 0.692 mg L-1 h-1 for the free and immobilized laccase, respectively. The immobilized laccase demonstrated improved stabilities towards organic solvents, which qualifies the composite's application in real wastewater samples. In which case, the laccase-ZIF composite proved effective in CBZ decontamination with an efficiency of ∼92%. Furthermore, the immobilized laccase exhibited appreciable storage stabilities (∼70% residual activity) for up to 15 days before any significant loss in activity.
Collapse
Affiliation(s)
- Mbongiseni Lungelo Dlamini
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Mahadi Lesaoana
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Izak Kotze
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Heidi Lynn Richards
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa.
| |
Collapse
|
7
|
Overexpression of LAS21 in Cellulase-Displaying Saccharomyces cerevisiae for High-Yield Ethanol Production from Pretreated Sugarcane Bagasse. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The valorization of lignocellulosic feedstocks into biofuels and biochemicals has received much attention due to its environmental friendliness and sustainability. However, engineering an ideal microorganism that can both produce sufficient cellulases and ferment ethanol is highly challenging. In this study, we have tested seven different genes that are involved in glycosylphosphatidylinositol (GPI) biosynthesis and remodeling for the improvement of cellulase activity tethered on the S. cerevisiae cell surface. It was found that the overexpression of LAS21 can improve β-glucosidase activity by 48.8% compared to the original strain. Then, the three cellulase genes (cellobiohydrolase, endoglucanase, and β-glucosidase) and the LAS21 gene were co-introduced into a diploid thermotolerant S. cerevisiae strain by a multiple-round transformation approach, resulting in the cellulolytic ECBLCCE5 strain. Further optimization of the bioprocess parameters was found to enhance the ethanol yield of the ECBLCCE5 strain. Scaling up the valorization of pretreated sugarcane bagasses in a 1 L bioreactor resulted in a maximum ethanol concentration of 28.0 g/L (86.5% of theoretical yield). Our study provides a promising way to improve the economic viability of second-generation ethanol production. Moreover, the engineering of genes involved in GPI biosynthesis and remodeling can be applied to other yeast cell surface display applications.
Collapse
|
8
|
Sotelo LD, Sotelo DC, Ornelas-Soto N, Cruz JC, Osma JF. Comparison of Acetaminophen Degradation by Laccases Immobilized by Two Different Methods via a Continuous Flow Microreactor Process Scheme. MEMBRANES 2022; 12:membranes12030298. [PMID: 35323773 PMCID: PMC8954522 DOI: 10.3390/membranes12030298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023]
Abstract
The presence of micropollutants in wastewater is one of the most significant environmental challenges. Particularly, pollutants such as pharmaceutical residues present high stability and resistance to conventional physicochemical and biological degradation processes. Thus, we aimed at immobilizing a laccase enzyme by two different methods: the first one was based on producing alginate-laccase microcapsules through a droplet-based microfluidic system; the second one was based on covalent binding of the laccase molecules on aluminum oxide (Al2O3) pellets. Immobilization efficiencies approached 92.18% and 98.22%, respectively. Laccase immobilized by the two different methods were packed into continuous flow microreactors to evaluate the degradation efficiency of acetaminophen present in artificial wastewater. After cyclic operation, enzyme losses were found to be up to 75 µg/mL and 66 µg/mL per operation cycle, with a maximum acetaminophen removal of 72% and 15% and a retention time of 30 min, for the laccase-alginate microcapsules and laccase-Al2O3 pellets, respectively. The superior catalytic performance of laccase-alginate microcapsules was attributed to their higher porosity, which enhances retention and, consequently, increased the chances for more substrate–enzyme interactions. Finally, phytotoxicity of the treated water was lower than that of the untreated wastewater, especially when using laccase immobilized in alginate microcapsules. Future work will be dedicated to elucidating the routes for scaling-up and optimizing the process to assure profitability.
Collapse
Affiliation(s)
- Laura D. Sotelo
- CMUA, Department of Electrical and Electronics Engineering, School of Engineering, Universidad de los Andes, Cra. 1E No. 19A-40, Bogota 111711, Colombia; (L.D.S.); (D.C.S.)
- Department of Biological Sciences, Universidad de los Andes, Cra. 1E No. 19A-40, Bogota 111711, Colombia
| | - Diana C. Sotelo
- CMUA, Department of Electrical and Electronics Engineering, School of Engineering, Universidad de los Andes, Cra. 1E No. 19A-40, Bogota 111711, Colombia; (L.D.S.); (D.C.S.)
| | - Nancy Ornelas-Soto
- Laboratorio de Nanotecnología Ambiental, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, N. L., Monterrey 64849, Mexico;
| | - Juan C. Cruz
- Department of Biomedical Engineering, School of Engineering, Universidad de los Andes, Cra. 1E No. 19A-40, Bogota 111711, Colombia;
| | - Johann F. Osma
- CMUA, Department of Electrical and Electronics Engineering, School of Engineering, Universidad de los Andes, Cra. 1E No. 19A-40, Bogota 111711, Colombia; (L.D.S.); (D.C.S.)
- Correspondence: ; Tel.: +57-601-339-4949
| |
Collapse
|
9
|
Liu C, Zhang W, Li Y, Pan K, OuYang K, Song X, Xiong X, Zang Y, Wang L, Qu M, Zhao X. Characterization of yeast cell surface displayed Lentinula edodes xylanase and its effects on the hydrolysis of wheat. Int J Biol Macromol 2022; 199:341-347. [PMID: 35026222 DOI: 10.1016/j.ijbiomac.2021.12.178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
The current study displayed a xylanase from Lentinula edodes on the surface of Pichia pastoris (sdLeXyn) and investigated its properties and effects on the wheat hydrolysis. Fluorescence microscope results showed that sdLeXyn was successfully anchored and displayed on the surface of P. pastoris X-33 cells. The highest activity of sdLeXyn was obtained at pH 3.0 and 50 °C. The sdLeXyn exhibited anti-high temperature property and showed broad temperature adaptability (>55% of the highest activity at 20-80 °C). The sdLeXyn was very stable at room temperature and could remain functionally stable at 50 °C for 3 h. The Km value was greater in sdLeXyn than that in free recombinant L. edodes xylanase. The sdLeXyn exhibited well resistance to Mn2+, Zn2+, Ca2+, Na+, Cu2+, Mg2+, K+, Ni2+ (1 mM and 5 mM) except Cu2+, which reduced the sdLeXyn activity by 54.5% at 5 mM dosage. The activity of sdLeXyn was increased by 42.6% by 5 mM Mn2+, 5 mM DTT, Trition X-100, and Tween 20 did not affect the activity of sdLeXyn, but SDS and EDTA slightly reduced it by 12.8% and 14.6%, respectively. The sdLeXyn could resist the degradation of pepsin, efficiently hydrolyzed wheat and reduced the viscosity of wheat hydrolysate. Current data indicate that the sdLeXyn has a potential as a feed additive to improve the utilization of wheat in poultry production.
Collapse
Affiliation(s)
- Chanjuan Liu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Wenjing Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yanjiao Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Ke Pan
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Kehui OuYang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiaozhen Song
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiaowen Xiong
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yitian Zang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lei Wang
- Shandong Institute for Food and Drug Control, Jinan, Shandong 250101, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
10
|
Arnthong J, Ponjarat J, Bussadee P, Deenarn P, Prommana P, Phienluphon A, Charoensri S, Champreda V, Zhao XQ, Suwannarangsee S. Enhanced surface display efficiency of β-glucosidase in Saccharomyces cerevisiae by disruption of cell wall protein-encoding genes YGP1 and CWP2. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Pekgenc E, Yavuzturk Gul B, Vatanpour V, Koyuncu I. Biocatalytic membranes in anti-fouling and emerging pollutant degradation applications: Current state and perspectives. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Printing toner used as carrier for immobilization of laccase. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Current advances in treatment technologies for removal of emerging contaminants from water – A critical review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213993] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Sun K, Li S, Si Y, Huang Q. Advances in laccase-triggered anabolism for biotechnology applications. Crit Rev Biotechnol 2021; 41:969-993. [PMID: 33818232 DOI: 10.1080/07388551.2021.1895053] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This is the first comprehensive overview of laccase-triggered anabolism from fundamental theory to biotechnology applications. Laccase is a typical biological oxidordeuctase that induces the one-electronic transfer of diverse substrates for engendering four phenoxy radicals with concomitant reduction of O2 into 2H2O. In vivo, laccase can participate in anabolic processes to create multifarious functional biopolymers such as fungal pigments, plant lignins, and insect cuticles, using mono/polyphenols and their derivatives as enzymatic substrates, and is thus conducive to biological tissue morphogenesis and global carbon storage. Exhilaratingly, fungal laccase has high redox potential (E° = 500-800 mV) and thermodynamic efficiency, making it a remarkable candidate for utilization as a versatile catalyst in the green and circular economy. This review elaborates the anabolic mechanisms of laccase in initiating the polymerization of natural phenolic compounds and their derivatives in vivo via radical-based self/cross-coupling. Information is also presented on laccase immobilization engineering that expands the practical application ranges of laccase in biotechnology by improving the enzymatic catalytic activity, stability, and reuse rate. Particularly, advances in biotechnology applications in vitro through fungal laccase-triggered macromolecular biosynthesis may provide a key research direction beneficial to the rational design of green chemistry.
Collapse
Affiliation(s)
- Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Shunyao Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, USA
| |
Collapse
|
15
|
Microbial cell surface display of oxidoreductases: Concepts and applications. Int J Biol Macromol 2020; 165:835-841. [DOI: 10.1016/j.ijbiomac.2020.09.237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022]
|
16
|
Jaiswal S, Shukla P. Alternative Strategies for Microbial Remediation of Pollutants via Synthetic Biology. Front Microbiol 2020; 11:808. [PMID: 32508759 PMCID: PMC7249858 DOI: 10.3389/fmicb.2020.00808] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Continuous contamination of the environment with xenobiotics and related recalcitrant compounds has emerged as a serious pollution threat. Bioremediation is the key to eliminating persistent contaminants from the environment. Traditional bioremediation processes show limitations, therefore it is necessary to discover new bioremediation technologies for better results. In this review we provide an outlook of alternative strategies for bioremediation via synthetic biology, including exploring the prerequisites for analysis of research data for developing synthetic biological models of microbial bioremediation. Moreover, cell coordination in synthetic microbial community, cell signaling, and quorum sensing as engineered for enhanced bioremediation strategies are described, along with promising gene editing tools for obtaining the host with target gene sequences responsible for the degradation of recalcitrant compounds. The synthetic genetic circuit and two-component regulatory system (TCRS)-based microbial biosensors for detection and bioremediation are also briefly explained. These developments are expected to increase the efficiency of bioremediation strategies for best results.
Collapse
|