1
|
Yang W, Chen X, Pang L, Tian H, Yang L, Xia B. Deciphering the Catalytic Proficiency and Mechanism of the N-Acetylglucosamine Deacetylase From Pantoea dispersa. Biotechnol Bioeng 2025; 122:495-508. [PMID: 39592864 DOI: 10.1002/bit.28894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Glucosamine (GlcN) is a widely utilized amino monosaccharide. It is traditionally synthesized from N-acetylglucosamine (GlcNAc) via chemical processes that pose environmental threats. In pursuit of a greener alternative, our investigation explored biocatalysis with a Pantoea dispersa derived deacetylase (Pd-nagA), showcasing its efficacy as a catalyst in GlcN production. As a result, this work provides a comprehensive characterization of Pd-nagA, scrutinizes its enzymatic behavior, and delves into the deacetylation mechanism in detail. Heterologous expression methods were utilized for the production and isolation of Pd-nagA, followed by a kinetic evaluation highlighting its enzymatic activity. The complex interactions between the enzyme and its substrate were investigated by integrating classical molecular dynamics, quantum mechanics/molecular mechanics simulations, funnel metadynamics, and on-the-fly probability enhanced sampling techniques, thereby elucidating the precise deacetylation pathway. Rigorous computational analysis results demonstrated that Pd-nagA exhibited promising specificity and efficiency for GlcNAc with a high turnover rate. The catalytic residues central to the reaction were identified, and the underlying quantum reaction mechanism was detailed. Our findings suggest an approach to GlcN production using eco-friendly biocatalysis, positioning Pd-nagA at the forefront of industrial application not only because of its remarkable catalytic capabilities but also due to its potential for enzyme optimization.
Collapse
Affiliation(s)
- Wentao Yang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiao Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Li Pang
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Hong Tian
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Liang Yang
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Bo Xia
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
2
|
Bozkurt EU, Ørsted EC, Volke DC, Nikel PI. Accelerating enzyme discovery and engineering with high-throughput screening. Nat Prod Rep 2024. [PMID: 39403004 DOI: 10.1039/d4np00031e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covering: up to August 2024Enzymes play an essential role in synthesizing value-added chemicals with high specificity and selectivity. Since enzymes utilize substrates derived from renewable resources, biocatalysis offers a pathway to an efficient bioeconomy with reduced environmental footprint. However, enzymes have evolved over millions of years to meet the needs of their host organisms, which often do not align with industrial requirements. As a result, enzymes frequently need to be tailored for specific industrial applications. Combining enzyme engineering with high-throughput screening has emerged as a key approach for developing novel biocatalysts, but several challenges are yet to be addressed. In this review, we explore emergent strategies and methods for isolating, creating, and characterizing enzymes optimized for bioproduction. We discuss fundamental approaches to discovering and generating enzyme variants and identifying those best suited for specific applications. Additionally, we cover techniques for creating libraries using automated systems and highlight innovative high-throughput screening methods that have been successfully employed to develop novel biocatalysts for natural product synthesis.
Collapse
Affiliation(s)
- Eray U Bozkurt
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Emil C Ørsted
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
3
|
Li F, Scheller S, Lienemann M. A growth-based screening strategy for engineering the catalytic activity of an oxygen-sensitive formate dehydrogenase. Appl Environ Microbiol 2024; 90:e0147224. [PMID: 39194220 PMCID: PMC11409667 DOI: 10.1128/aem.01472-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Enzyme engineering is a powerful tool for improving or altering the properties of biocatalysts for industrial, research, and therapeutic applications. Fast and accurate screening of variant libraries is often the bottleneck of enzyme engineering and may be overcome by growth-based screening strategies with simple processes to enable high throughput. The currently available growth-based screening strategies have been widely employed for enzymes but not yet for catalytically potent and oxygen-sensitive metalloenzymes. Here, we present a screening system that couples the activity of an oxygen-sensitive formate dehydrogenase to the growth of Escherichia coli. This system relies on the complementation of the E. coli formate hydrogenlyase (FHL) complex by Mo-dependent formate dehydrogenase H (EcFDH-H). Using an EcFDH-H-deficient strain, we demonstrate that growth inhibition by acidic glucose fermentation products can be alleviated by FHL complementation. This allows the identification of catalytically active EcFDH-H variants at a readily measurable cell density readout, reduced handling efforts, and a low risk of oxygen contamination. Furthermore, a good correlation between cell density and formate oxidation activity was established using EcFDH-H variants with variable catalytic activities. As proof of concept, the growth assay was employed to screen a library of 1,032 EcFDH-H variants and reduced the library size to 96 clones. During the subsequent colorimetric screening of these clones, the variant A12G exhibiting an 82.4% enhanced formate oxidation rate was identified. Since many metal-dependent formate dehydrogenases and hydrogenases form functional complexes resembling E. coli FHL, the demonstrated growth-based screening strategy may be adapted to components of such electron-transferring complexes.IMPORTANCEOxygen-sensitive metalloenzymes are highly potent catalysts that allow the reduction of chemically inert substrates such as CO2 and N2 at ambient pressure and temperature and have, therefore, been considered for the sustainable production of biofuels and commodity chemicals such as ammonia, formic acid, and glycine. A proven method to optimize natural enzymes for such applications is enzyme engineering using high-throughput variant library screening. However, most screening methods are incompatible with the oxygen sensitivity of these metalloenzymes and thereby limit their relevance for the development of biosynthetic production processes. A microtiter plate-based assay was developed for the screening of metal-dependent formate dehydrogenase that links the activity of the tested enzyme variant to the growth of the anaerobically grown host cell. The presented work extends the application range of growth-based screening to metalloenzymes and is thereby expected to advance their adoption to biosynthesis applications.
Collapse
Affiliation(s)
- Feilong Li
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Silvan Scheller
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | | |
Collapse
|
4
|
Zhou SP, Xue YP, Zheng YG. Maximizing the potential of nitrilase: Unveiling their diversity, catalytic proficiency, and versatile applications. Biotechnol Adv 2024; 72:108352. [PMID: 38574900 DOI: 10.1016/j.biotechadv.2024.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/10/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Nitrilases represent a distinct class of enzymes that play a pivotal role in catalyzing the hydrolysis of nitrile compounds, leading to the formation of corresponding carboxylic acids. These enzymatic entities have garnered significant attention across a spectrum of industries, encompassing pharmaceuticals, agrochemicals, and fine chemicals. Moreover, their significance has been accentuated by mounting environmental pressures, propelling them into the forefront of biodegradation and bioremediation endeavors. Nevertheless, the natural nitrilases exhibit intrinsic limitations such as low thermal stability, narrow substrate selectivity, and inadaptability to varying environmental conditions. In the past decade, substantial efforts have been made in elucidating the structural underpinnings and catalytic mechanisms of nitrilase, providing basis for engineering of nitrilases. Significant breakthroughs have been made in the regulation of nitrilases with ideal catalytic properties and application of the enzymes for industrial productions. This review endeavors to provide a comprehensive discourse and summary of recent research advancements related to nitrilases, with a particular emphasis on the elucidation of the structural attributes, catalytic mechanisms, catalytic characteristics, and strategies for improving catalytic performance of nitrilases. Moreover, the exploration extends to the domain of process engineering and the multifarious applications of nitrilases. Furthermore, the future development trend of nitrilases is prospected, providing important guidance for research and application in the related fields.
Collapse
Affiliation(s)
- Shi-Peng Zhou
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Shen Q, Zhang SJ, Xu BH, Chen ZY, Peng F, Xiong N, Xue YP, Zheng YG. Semirational engineering of Cytophaga hutchinsonii polyphosphate kinase for developing a cost-effective, robust, and efficient adenosine 5'-triphosphate regeneration system. Appl Environ Microbiol 2023; 89:e0110623. [PMID: 37902313 PMCID: PMC10686093 DOI: 10.1128/aem.01106-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The adenosine 5'-triphosphate (ATP) regeneration system can significantly reduce the cost of many biocatalytic processes. Numerous studies have endeavored to utilize the ATP regeneration system based on Cytophaga hutchinsonii PPK (ChPPK). However, the wild-type ChPPK enzyme possesses limitations such as low enzymatic activity, poor stability, and limited substrate tolerance, impeding its application in catalytic reactions. To enhance the performance of ChPPK, we employed a semi-rational design approach to obtain the variant ChPPK/A79G/S106C/I108F/L285P. The enzymatic kinetic parameters and the catalytic performance in the synthesis of nicotinamide mononucleotide demonstrated that the variant ChPPK/A79G/S106C/I108F/L285P exhibited superior enzymatic properties than the wild-type enzyme. All data indicated that our engineered ATP regeneration system holds inherent potential for implementation in biocatalytic processes.
Collapse
Affiliation(s)
- Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Shi-Jia Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Bin-Hui Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Yu Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Feng Peng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Neng Xiong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
6
|
Gantz M, Neun S, Medcalf EJ, van Vliet LD, Hollfelder F. Ultrahigh-Throughput Enzyme Engineering and Discovery in In Vitro Compartments. Chem Rev 2023; 123:5571-5611. [PMID: 37126602 PMCID: PMC10176489 DOI: 10.1021/acs.chemrev.2c00910] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 05/03/2023]
Abstract
Novel and improved biocatalysts are increasingly sourced from libraries via experimental screening. The success of such campaigns is crucially dependent on the number of candidates tested. Water-in-oil emulsion droplets can replace the classical test tube, to provide in vitro compartments as an alternative screening format, containing genotype and phenotype and enabling a readout of function. The scale-down to micrometer droplet diameters and picoliter volumes brings about a >107-fold volume reduction compared to 96-well-plate screening. Droplets made in automated microfluidic devices can be integrated into modular workflows to set up multistep screening protocols involving various detection modes to sort >107 variants a day with kHz frequencies. The repertoire of assays available for droplet screening covers all seven enzyme commission (EC) number classes, setting the stage for widespread use of droplet microfluidics in everyday biochemical experiments. We review the practicalities of adapting droplet screening for enzyme discovery and for detailed kinetic characterization. These new ways of working will not just accelerate discovery experiments currently limited by screening capacity but profoundly change the paradigms we can probe. By interfacing the results of ultrahigh-throughput droplet screening with next-generation sequencing and deep learning, strategies for directed evolution can be implemented, examined, and evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| |
Collapse
|
7
|
Cui H, Vedder M, Schwaneberg U, Davari MD. Using Molecular Simulation to Guide Protein Engineering for Biocatalysis in Organic Solvents. Methods Mol Biol 2022; 2397:179-202. [PMID: 34813065 DOI: 10.1007/978-1-0716-1826-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biocatalysis in organic solvents (OSs) is very appealing for the industry in producing bulk and/or fine chemicals, such as pharmaceuticals, biodiesel, and fragrances. The poor performance of enzymes in OSs (e.g., reduced activity, insufficient stability, and deactivation) negates OSs' excellent solvent properties. Molecular dynamics (MD) simulations provide a complementary method to study the relationship between enzymes dynamics and the stability in OSs. Here we describe computational procedure for MD simulation of enzymes in OSs with an example of Bacillus subtilis lipase A (BSLA) in dimethyl sulfoxide (DMSO) cosolvent with software GROMACS. We discuss main essential practical issues considered (such as choice of force field, parameterization, simulation setup, and trajectory analysis). The core part of this protocol (enzyme-OS system setup, analysis of structural-based and solvation-based observables) is transferable to other enzymes and any OS systems. Combining with experimental studies, the obtained molecular knowledge is most likely to guide researchers to access rational protein engineering approaches to tailor OS resistant enzymes and expand the scope of biocatalysis in OS media. Finally, we discuss potential solutions to overcome the remaining challenges of computational biocatalysis in OSs and briefly draw future directions for further improvement in this field.
Collapse
Affiliation(s)
- Haiyang Cui
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Markus Vedder
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
8
|
Cui H, Jaeger KE, Davari MD, Schwaneberg U. CompassR Yields Highly Organic-Solvent-Tolerant Enzymes through Recombination of Compatible Substitutions. Chemistry 2021; 27:2789-2797. [PMID: 33186477 DOI: 10.1002/chem.202004471] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/12/2020] [Indexed: 01/28/2023]
Abstract
The CompassR (computer-assisted recombination) rule enables, among beneficial substitutions, the identification of those that can be recombined in directed evolution. Herein, a recombination strategy is systematically investigated to minimize experimental efforts and maximize possible improvements. In total, 15 beneficial substitutions from Bacillus subtilis lipase A (BSLA), which improves resistance to the organic cosolvent 1,4-dioxane (DOX), were studied to compare two recombination strategies, the two-gene recombination process (2GenReP) and the in silico guided recombination process (InSiReP), employing CompassR. Remarkably, both strategies yielded a highly DOX-resistant variant, M4 (I12R/Y49R/E65H/N98R/K122E/L124K), with up to 14.6-fold improvement after screening of about 270 clones. M4 has a remarkably enhanced resistance in 60 % (v/v) acetone (6.0-fold), 30 % (v/v) ethanol (2.1-fold), and 60 % (v/v) methanol (2.4-fold) compared with wild-type BSLA. Molecular dynamics simulations revealed that attracting water molecules by charged surface substitutions is the main driver for increasing the DOX resistance of BSLA M4. Both strategies and obtained molecular knowledge can likely be used to improve the properties of other enzymes with a similar α/β-hydrolase fold.
Collapse
Affiliation(s)
- Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Wilhelm Johnen Strasse, 52426, Jülich, Germany.,Institute of Bio-and Geosciences IBG 1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, 52426, Jülich, Germany
| | - Mehdi D Davari
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.,DWI Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
| |
Collapse
|
9
|
Zou S, Hua D, Jiang Z, Han X, Xue Y, Zheng Y. A integrated process for nitrilase-catalyzed asymmetric hydrolysis and easy biocatalyst recycling by introducing biocompatible biphasic system. BIORESOURCE TECHNOLOGY 2021; 320:124392. [PMID: 33246240 DOI: 10.1016/j.biortech.2020.124392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
The whole-cell nitrilase-catalyzed asymmetric hydrolysis of nitriles is a green and efficient preparation approach for chiral carboxylic acids, but often suffers from toxicity and cell lysis from organic substrates. In this work, a novel integrated process for whole-cell nitrilase-catalyzed asymmetric hydrolysis was developed for the first time by introducing a biocompatible ionic liquid (IL)-based biphasic system. The whole-cell nitrilases displayed an outstanding stability and recyclability in the biphasic system and still retained > 85% activity even after 7 cycles reaction. A preparative-scale fed-batch hydrolysis of o-chloromandelonitrile to (R)-o-chloromandelic acid (R-CMA) was performed using the integrated process. The results revealed a yield of 91.3% and a space-time yield of 746.4 g·L-1·d-1, which are currently the highest reported values for R-CMA biosynthesis. The proposed integrated process avoids substrate inhibition, facilitates the reusability of whole-cell nitrilases, and thus shows great potential for the sustainable production of chiral carboxylic acids.
Collapse
Affiliation(s)
- Shuping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dengen Hua
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhentao Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xin Han
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
10
|
Carneiro T, Wrzosek K, Bettenbrock K, Lorenz H, Seidel‐Morgenstern A. Immobilization of an amino acid racemase for application in crystallization-based chiral resolutions of asparagine monohydrate. Eng Life Sci 2020; 20:550-561. [PMID: 33304228 PMCID: PMC7708953 DOI: 10.1002/elsc.202000029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 08/13/2020] [Indexed: 01/04/2023] Open
Abstract
Integration of racemization and a resolution process is an attractive way to overcome yield limitations in the production of pure chiral molecules. Preferential crystallization and other crystallization-based techniques usually produce low enantiomeric excess in solution, which is a constraint for coupling with racemization. We developed an enzymatic fixed bed reactor that can potentially overcome these unfavorable conditions and improve the overall yield of preferential crystallization. Enzyme immobilization strategies were investigated on covalent-binding supports. The amino acid racemase immobilized in Purolite ECR 8309F with a load of 35 mg-enzyme/g-support showed highest specific activity (approx. 500 U/g-support) and no loss in activity in reusability tests. Effects of substrate inhibition observed for the free enzyme were overcome after immobilization. A packed bed reactor with the immobilized racemase showed good performance in steady state operation processing low enantiomeric excess inlet. Kinetic parameters from batch reactor experiments can be successfully used for prediction of packed bed reactor performance. Full conversions could be achieved for residence times above 1.1 min. The results suggest the potential of the prepared racemase reactor to be combined with preferential crystallization to improve resolution of asparagine enantiomers.
Collapse
Affiliation(s)
- Thiane Carneiro
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Katarzyna Wrzosek
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Heike Lorenz
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Andreas Seidel‐Morgenstern
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
- Otto‐von‐Guericke University MagdeburgMagdeburgGermany
| |
Collapse
|
11
|
Wu X, Ahmed S, Cui X, Hang J, Wang S, Liu S, Fang Y. Expression and characterization of a novel organic solvent tolerant protease from Bacillus sphaericus DS11. Prep Biochem Biotechnol 2020; 51:28-34. [PMID: 32633612 DOI: 10.1080/10826068.2020.1786839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Organic solvent-tolerant proteases have many applications in the synthesis of peptides. In this study, we have developed a low-cost and convenient method to produce highly concentrated organic solvent-tolerant protease. Organic solvent tolerant protease (OSP) gene from Bacillus sphaericus DS11 was cloned and expressed in Bacillus subtilis WB800. The optimum pH of the recombinant protease was 9.0. The optimum temperature of the recombinant protease was 40 °C. The recombinant protease was purified by ethanol with the yield of (87.33%). The yield of OSP enriched by ethanol was higher than that of by Ni-chelating affinity chromatography, which indicated that precipitation of the recombinant OSP with ethanol is a relatively low-cost and fast method for organic solvent -tolerant protease preparation. These results showed that this enzyme could be very useful in different industrial applications.
Collapse
Affiliation(s)
- Xincai Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Sibtain Ahmed
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Xiaolin Cui
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Jiahao Hang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|