1
|
Bai Y, Mercadé ID, Elgendy R, Lambiase G, Peak-Chew S, Franco C, Wingett SW, Stevens TJ, Grassi L, Hitchcock N, Ferreira CS, Hatton D, Miller EA, Mistry RK. Identification of cellular signatures associated with chinese hamster ovary cell adaptation for secretion of antibodies. Comput Struct Biotechnol J 2024; 27:17-31. [PMID: 39760073 PMCID: PMC11697065 DOI: 10.1016/j.csbj.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
The secretory capacity of Chinese hamster ovary (CHO) cells remains a fundamental bottleneck in the manufacturing of protein-based therapeutics. Unconventional biological drugs with complex structures and processing requirements are particularly problematic. Although engineered vector DNA elements can achieve rapid and high-level therapeutic protein production, a high metabolic and protein folding burden is imposed on the host cell. Cellular adaptations to these conditions include differential gene expression profiles that can in turn influence the productivity and quality control of recombinant proteins. In this study, we used quantitative transcriptomic and proteomic analyses to investigate how biological pathways change with antibody titre. Gene and protein expression profiles of CHO cell pools and clones producing a panel of different monoclonal and bispecific antibodies were analysed during fed-batch production. Antibody-expressing CHO cell pools were heterogeneous, resulting in few discernible genetic signatures. Clonal cell lines derived from these pools, selected for high and low production, yielded a small number of differentially expressed proteins that correlated with productivity and were shared across the biotherapeutics. However, the dominant feature associated with higher protein production was transgene copy number and the resulting mRNA expression level. Moreover, variability between clonal cell lines suggested that the process of cellular adaptation is variable with diverse cellular changes associated with individual adaptation events.
Collapse
Affiliation(s)
- Ying Bai
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, AstraZeneca, Cambridge UK
| | - Ivan Domenech Mercadé
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, AstraZeneca, Cambridge UK
| | - Ramy Elgendy
- Translational Genomics, Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Giulia Lambiase
- Analytical Sciences, BioPharmaceutical Development, AstraZeneca, Cambridge, UK
| | - Sew Peak-Chew
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Catarina Franco
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Steven W. Wingett
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Tim J. Stevens
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Luigi Grassi
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, AstraZeneca, Cambridge UK
| | - Noah Hitchcock
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, AstraZeneca, Cambridge UK
| | - Cristina Sayago Ferreira
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, AstraZeneca, Cambridge UK
| | - Diane Hatton
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, AstraZeneca, Cambridge UK
| | - Elizabeth A. Miller
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Rajesh K. Mistry
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, AstraZeneca, Cambridge UK
| |
Collapse
|
2
|
Mao L, Schneider JW, Robinson AS. Rosmarinic acid enhances CHO cell productivity and proliferation through activation of the unfolded protein response and the mTOR pathway. Biotechnol J 2024; 19:e2300397. [PMID: 37897814 DOI: 10.1002/biot.202300397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Rosmarinic acid (RA) has gained attraction in bioprocessing as a media supplement to improve cellular proliferation and protein production. Here, we observe up to a two-fold increase in antibody production with RA-supplementation, and a concentration-dependent effect of RA on cell proliferation for fed-batch Chinese hamster ovary (CHO) cell cultures. Contrary to previously reported antioxidant activity, RA increased the reactive oxygen species (ROS) levels, stimulated endoplasmic reticulum (ER) stress, activated the unfolded protein response (UPR), and elicited DNA damage. Despite such stressful events, RA appeared to maintained cell health via mammalian target of rapamycin (mTOR) pathway activation; both mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) were stimulated in RA-supplemented cultures. By reversing such mTOR pathway activity through either chemical inhibitor addition or siRNA knockdown of genes regulating the mTORC1 and mTORC2 complexes, antibody production, UPR signaling, and stress-induced DNA damage were reduced. Further, the proliferative effect of RA appeared to be regulated selectively by mTORC2 activation and have reproduced this observation by using the mTORC2 stimulator SC-79. Analogously, knockdown of mTORC2 strongly reduced X-box binding protein 1 (XBP1) splicing, which would be expected to reduce antibody folding and secretion, sugging that reduced mTORC2 would correlate with reduced antibody levels. The crosstalk between mTOR activation and UPR upregulation may thus be related directly to the enhanced productivity. Our results show the importance of the mTOR and UPR pathways in increasing antibody productivity, and suggest that RA supplementation may obviate the need for labor-intensive genetic engineering by directly activating pathways favorable to cell culture performance.
Collapse
Affiliation(s)
- Leran Mao
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - James W Schneider
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Lu JT, Xiao MK, Feng YY, Wang XY, Qiu LL, Chai YR, Wang TY, Jia YL. Apilimod enhances specific productivity in recombinant CHO cells through cell cycle arrest and mediation of autophagy. Biotechnol J 2023; 18:e2200147. [PMID: 36478399 DOI: 10.1002/biot.202200147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/02/2022] [Accepted: 09/06/2022] [Indexed: 12/12/2022]
Abstract
Chinese hamster ovary (CHO) cells are expected to acquire the ability to produce higher recombinant therapeutic protein levels using various strategies. Genetic engineering targeting the cell cycle and autophagy pathways in the regulation of cell death in CHO cell cultures has received attention for enhancing the production of therapeutic proteins. In this study, we examined the small-molecule compound apilimod, which was found to have a positive influence on recombinant protein expression in CHO cells. This was confirmed by selective blocking of the cell cycle at the G0/G1 phase. Apilimod treatment resulted in decreased expression of cyclin-dependent kinase 3 (CDK3) and Cyclin C and increased expression of cyclin-dependent kinase suppressor p27Kip1, which are critical regulators of G1 cell cycle progression and important targets controlling cell proliferation. Furthermore, total transcription factor EB (TFEB) was lower in apilimod-treated CHO cells than in control cells, resulting in decreased lysosome biogenesis and autophagy with apilimod treatment. These multiple effects demonstrate the potential of apilimod for development as a novel enhancer for the production of recombinant proteins in CHO cell engineering.
Collapse
Affiliation(s)
- Jiang-Tao Lu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan, China
| | - Meng-Ke Xiao
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan, China.,School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ying-Ying Feng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan, China.,School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Le-Le Qiu
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan, China.,School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan-Long Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
4
|
Xu WJ, Lin Y, Mi CL, Pang JY, Wang TY. Progress in fed-batch culture for recombinant protein production in CHO cells. Appl Microbiol Biotechnol 2023; 107:1063-1075. [PMID: 36648523 PMCID: PMC9843118 DOI: 10.1007/s00253-022-12342-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023]
Abstract
Nearly 80% of the approved human therapeutic antibodies are produced by Chinese Hamster Ovary (CHO) cells. To achieve better cell growth and high-yield recombinant protein, fed-batch culture is typically used for recombinant protein production in CHO cells. According to the demand of nutrients consumption, feed medium containing multiple components in cell culture can affect the characteristics of cell growth and improve the yield and quality of recombinant protein. Fed-batch optimization should have a connection with comprehensive factors such as culture environmental parameters, feed composition, and feeding strategy. At present, process intensification (PI) is explored to maintain production flexible and meet forthcoming demands of biotherapeutics process. Here, CHO cell culture, feed composition in fed-batch culture, fed-batch culture environmental parameters, feeding strategies, metabolic byproducts in fed-batch culture, chemostat cultivation, and the intensified fed-batch are reviewed. KEY POINTS: • Fed-batch culture in CHO cells is reviewed. • Fed-batch has become a common technology for recombinant protein production. • Fed batch culture promotes recombinant protein production in CHO cells.
Collapse
Affiliation(s)
- Wen-Jing Xu
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China ,grid.412990.70000 0004 1808 322XSchool of Pharmacy, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Yan Lin
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China ,grid.412990.70000 0004 1808 322XSchool of Nursing, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Chun-Liu Mi
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Jing-Ying Pang
- grid.412990.70000 0004 1808 322XSchool of the First Clinical College, Xinxiang Medical University, Xinxiang, 453000 Henan China
| | - Tian-Yun Wang
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China ,grid.495434.b0000 0004 1797 4346School of medicine, Xinxiang University, Xinxiang, 453003 Henan China
| |
Collapse
|
5
|
He Y, Lu H, Zhao Y. Development of an autophagy activator from Class III PI3K complexes, Tat-BECN1 peptide: Mechanisms and applications. Front Cell Dev Biol 2022; 10:851166. [PMID: 36172279 PMCID: PMC9511052 DOI: 10.3389/fcell.2022.851166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Impairment or dysregulation of autophagy has been implicated in many human pathologies ranging from neurodegenerative diseases, infectious diseases, cardiovascular diseases, metabolic diseases, to malignancies. Efforts have been made to explore the therapeutic potential of pharmacological autophagy activators, as beneficial health effects from caloric restriction or physical exercise are linked to autophagy activation. However, the lack of specificity remains the major challenge to the development and clinical use of autophagy activators. One candidate of specific autophagy activators is Tat-BECN1 peptide, derived from Beclin 1 subunit of Class III PI3K complexes. Here, we summarize the molecular mechanisms by which Tat-BECN1 peptide activates autophagy, the strategies for optimization and development, and the applications of Tat-BECN1 peptide in cellular and organismal models of physiology and pathology.
Collapse
Affiliation(s)
| | | | - Yuting Zhao
- Institute of Future Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Wang Y, Li X, Chen X, Siewers V. CRISPR/Cas9-mediated point mutations improve α-amylase secretion in Saccharomyces cerevisiae. FEMS Yeast Res 2022; 22:6626025. [PMID: 35776981 PMCID: PMC9290899 DOI: 10.1093/femsyr/foac033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/28/2022] [Indexed: 11/12/2022] Open
Abstract
The rapid expansion of the application of pharmaceutical proteins and industrial enzymes requires robust microbial workhorses for high protein production. The budding yeast Saccharomyces cerevisiae is an attractive cell factory due to its ability to perform eukaryotic post-translational modifications and to secrete proteins. Many strategies have been used to engineer yeast platform strains for higher protein secretion capacity. Herein, we investigated a line of strains that have previously been selected after UV random mutagenesis for improved α-amylase secretion. A total of 42 amino acid altering point mutations identified in this strain line were reintroduced into the parental strain AAC to study their individual effects on protein secretion. These point mutations included missense mutations (amino acid substitution), nonsense mutations (stop codon generation), and frameshift mutations. For comparison, single gene deletions for the corresponding target genes were also performed in this study. A total of 11 point mutations and seven gene deletions were found to effectively improve α-amylase secretion. These targets were involved in several bioprocesses, including cellular stresses, protein degradation, transportation, mRNA processing and export, DNA replication, and repair, which indicates that the improved protein secretion capacity in the evolved strains is the result of the interaction of multiple intracellular processes. Our findings will contribute to the construction of novel cell factories for recombinant protein secretion.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| | - Xiaowei Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| | - Xin Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| | - Verena Siewers
- Corresponding author. Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden. Tel: +46 (0)317723853; E-mail:
| |
Collapse
|
7
|
The potential of emerging sub-omics technologies for CHO cell engineering. Biotechnol Adv 2022; 59:107978. [DOI: 10.1016/j.biotechadv.2022.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 05/07/2022] [Indexed: 11/23/2022]
|
8
|
Lemarié M, Chatonnet F, Caron G, Fest T. Early Emergence of Adaptive Mechanisms Sustaining Ig Production: Application to Antibody Therapy. Front Immunol 2021; 12:671998. [PMID: 33995412 PMCID: PMC8117215 DOI: 10.3389/fimmu.2021.671998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 01/13/2023] Open
Abstract
Antibody therapy, where artificially-produced immunoglobulins (Ig) are used to treat pathological conditions such as auto-immune diseases and cancers, is a very innovative and competitive field. Although substantial efforts have been made in recent years to obtain specific and efficient antibodies, there is still room for improvement especially when considering a precise tissular targeting or increasing antigen affinity. A better understanding of the cellular and molecular steps of terminal B cell differentiation, in which an antigen-activated B cell becomes an antibody secreting cell, may improve antibody therapy. In this review, we use our recently published data about human B cell differentiation, to show that the mechanisms necessary to adapt a metamorphosing B cell to its new secretory function appear quite early in the differentiation process i.e., at the pre-plasmablast stage. After characterizing the molecular pathways appearing at this stage, we will focus on recent findings about two main processes involved in antibody production: unfolded protein response (UPR) and endoplasmic reticulum (ER) stress. We’ll show that many genes coding for factors involved in UPR and ER stress are induced at the pre-plasmablast stage, sustaining our hypothesis. Finally, we propose to use this recently acquired knowledge to improve productivity of industrialized therapeutic antibodies.
Collapse
Affiliation(s)
- Maud Lemarié
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France
| | - Fabrice Chatonnet
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France.,Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Gersende Caron
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France.,Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Thierry Fest
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, Rennes, France.,Laboratoire d'Hématologie, Pôle de Biologie, Centre Hospitalier Universitaire, Rennes, France
| |
Collapse
|