1
|
Zhu C, Wang Z, Zhou X, Wu Y, Kang W, Wu R, Xue C. Elucidating the Biosynthesis and Function of an Autoinducing Peptide in Clostridium acetobutylicum. Angew Chem Int Ed Engl 2025; 64:e202500904. [PMID: 39932863 DOI: 10.1002/anie.202500904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/13/2025]
Abstract
Clostridia produce autoinducing peptides (AIPs) regulated by the accessory gene regulator (Agr) quorum sensing system, playing a critical role in intercellular communication. However, the biosynthetic pathway and regulatory functions of clostridial AIPs remain inadequately characterized. In this study, we employed chemical quantification, genetic investigations, and in vitro reconstitution experiments to elucidate the native Ca-AIP in Clostridium acetobutylicum, a prominent industrial producer of acetone, butanol, and ethanol. Our findings identified a signal peptidase (Cac1760) and two CAAX metalloproteases (Cac0077 and Cac2478) as key players in N-terminal cleavage, while AgrB was found to be essential for C-terminal processing during Ca-AIP biosynthesis. Notably, overexpression of agrBD led to a 4.4-fold enhancement in Ca-AIP formation, which corresponded with an increase in butanol production from 12.5 to 14.9 g/L, while preserving vegetative cell morphology. The direct involvement of Ca-AIP in both butanol production and maintenance of cell morphology was further validated through exogenous supplementation. Collectively, these results provide novel insights into the biosynthesis of AIPs and propose a promising strategy for optimizing microbial processes in industrial applications.
Collapse
Affiliation(s)
- Chao Zhu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Zixuan Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoyu Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Youduo Wu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian, University of Technology, Ningbo, 315016, China
| | - Wei Kang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian, University of Technology, Ningbo, 315016, China
| | - Ren'an Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chuang Xue
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian, University of Technology, Ningbo, 315016, China
| |
Collapse
|
2
|
Guo Q, Liu CY, Zheng LJ, Zheng SH, Zhang YX, Zhao SY, Zheng HD, Fan LH, Lin XC. Metabolically Engineered Escherichia coli for Conversion of D-Fructose to D-Allulose via Phosphorylation-Dephosphorylation. Front Bioeng Biotechnol 2022; 10:947469. [PMID: 35814008 PMCID: PMC9257026 DOI: 10.3389/fbioe.2022.947469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
D-Allulose is an ultra-low calorie sweetener with broad market prospects. As an alternative to Izumoring, phosphorylation-dephosphorylation is a promising method for D-allulose synthesis due to its high conversion of substrate, which has been preliminarily attempted in enzymatic systems. However, in vitro phosphorylation-dephosphorylation requires polyphosphate as a phosphate donor and cannot completely deplete the substrate, which may limit its application in industry. Here, we designed and constructed a metabolic pathway in Escherichia coli for producing D-allulose from D-fructose via in vivo phosphorylation-dephosphorylation. PtsG-F and Mak were used to replace the fructose phosphotransferase systems (PTS) for uptake and phosphorylation of D-fructose to fructose-6-phosphate, which was then converted to D-allulose by AlsE and A6PP. The D-allulose titer reached 0.35 g/L and the yield was 0.16 g/g. Further block of the carbon flux into the Embden-Meyerhof-Parnas (EMP) pathway and introduction of an ATP regeneration system obviously improved fermentation performance, increasing the titer and yield of D-allulose to 1.23 g/L and 0.68 g/g, respectively. The E. coli cell factory cultured in M9 medium with glycerol as a carbon source achieved a D-allulose titer of ≈1.59 g/L and a yield of ≈0.72 g/g on D-fructose.
Collapse
Affiliation(s)
- Qiang Guo
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Chen-Yang Liu
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Ling-Jie Zheng
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Shang-He Zheng
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Ya-Xing Zhang
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Su-Ying Zhao
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - Hui-Dong Zheng
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - Li-Hai Fan
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
- *Correspondence: Li-Hai Fan, ; Xiao-Cheng Lin,
| | - Xiao-Cheng Lin
- Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
- *Correspondence: Li-Hai Fan, ; Xiao-Cheng Lin,
| |
Collapse
|
3
|
Du G, Wu Y, Kang W, Xu Y, Li S, Xue C. Enhanced butanol production in Clostridium acetobutylicum by manipulating metabolic pathway genes. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Li X, Han R, Bao T, Osire T, Zhang X, Xu M, Yang T, Rao Z. Citrulline deiminase pathway provides ATP and boosts growth of Clostridium carboxidivorans P7. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:204. [PMID: 34656154 PMCID: PMC8520249 DOI: 10.1186/s13068-021-02051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Clostridium carboxidivorans P7 is capable of producing ethanol and butanol from inexpensive and non-food feedstock, such as syngas. Achieving improved ethanol and butanol production in the strain for industrial application depends on the energetics and biomass, especially ATP availability. RESULTS This study found that exogenous addition of citrulline promoted accumulation of ATP, increased specific growth rate, and reduced the doubling time of C. carboxidivorans P7. In heterotrophic fermentation experiments, the addition of citrulline increased intracellular ATP by 3.39-fold, significantly enhancing the production of total alcohol (ethanol + butanol) by 20%. Moreover, in the syngas fermentation experiments, the addition of citrulline improved the level of intracellular ATP and the biomass by 80.5% and 31.6%, respectively, resulting in an 18.6% and 60.3% increase in ethanol and the alcohol/acid production ratio, respectively. CONCLUSIONS This is the first report that citrulline could promote the growth of C. carboxidivorans P7 and increase the level of intracellular ATP, which is of great significance for the use of C. carboxidivorans P7 to synthesize biofuels.
Collapse
Affiliation(s)
- Xiangfei Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Rumeng Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Teng Bao
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|