1
|
Schubert MG, Tang TC, Goodchild-Michelman IM, Ryon KA, Henriksen JR, Chavkin T, Wu Y, Miettinen TP, Van Wychen S, Dahlin LR, Spatafora D, Turco G, Guarnieri MT, Manalis SR, Kowitz J, Hann EC, Dhir R, Quatrini P, Mason CE, Church GM, Milazzo M, Tierney BT. Cyanobacteria newly isolated from marine volcanic seeps display rapid sinking and robust, high-density growth. Appl Environ Microbiol 2024; 90:e0084124. [PMID: 39470214 DOI: 10.1128/aem.00841-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/27/2024] [Indexed: 10/30/2024] Open
Abstract
Cyanobacteria are photosynthetic organisms that play important roles in carbon cycling and are promising bioproduction chassis. Here, we isolate two novel cyanobacteria with 4.6Mbp genomes, UTEX 3221 and UTEX 3222, from a unique marine environment with naturally elevated CO₂. We describe complete genome sequences for both isolates and, focusing on UTEX 3222 due to its planktonic growth in liquid, characterize biotechnologically relevant growth and biomass characteristics. UTEX 3222 outpaces other fast-growing model strains on a solid medium. It can double every 2.35 hours in a liquid medium and grows to high density (>31 g/L biomass dry weight) in batch culture, nearly double that of Synechococcus sp. PCC 11901, whose high-density growth was recently reported. In addition, UTEX 3222 sinks readily, settling more quickly than other fast-growing strains, suggesting favorable economics of harvesting UTEX 3222 biomass. These traits may make UTEX 3222 a compelling choice for marine carbon dioxide removal (CDR) and photosynthetic bioproduction from CO₂. Overall, we find that bio-prospecting in environments with naturally elevated CO₂ may uncover novel CO₂-metabolizing organisms with unique characteristics. IMPORTANCE Cyanobacteria provide a potential avenue for both biomanufacturing and combatting climate change via high-efficiency photosynthetic carbon sequestration. This study identifies novel photosynthetic organisms isolated from a unique geochemical environment and describes their genomes, growth behavior in culture, and biochemical composition. These cyanobacteria appear to make a tractable research model, and cultures are made publicly available alongside information about their culture and maintenance. Application of these organisms to carbon sequestration and/or biomanufacturing is discussed, including unusual, rapid settling characteristics of the strains relevant to scaled culture.
Collapse
Affiliation(s)
- Max G Schubert
- Two Frontiers Project, Fort Collins, Colorado, USA
- Wyss Institute of Biologically-Inspired Engineering, Boston, Massachusetts, USA
| | - Tzu-Chieh Tang
- Wyss Institute of Biologically-Inspired Engineering, Boston, Massachusetts, USA
| | | | - Krista A Ryon
- Two Frontiers Project, Fort Collins, Colorado, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | - James R Henriksen
- Two Frontiers Project, Fort Collins, Colorado, USA
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Theodore Chavkin
- Two Frontiers Project, Fort Collins, Colorado, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yanqi Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stefanie Van Wychen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Lukas R Dahlin
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Davide Spatafora
- Two Frontiers Project, Fort Collins, Colorado, USA
- Department of Integrative Marine Ecology, Sicily, Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo (complesso Roosevelt), Palermo, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Gabriele Turco
- Two Frontiers Project, Fort Collins, Colorado, USA
- National Biodiversity Future Center, Palermo, Italy
- Department of Earth and Marine Sciences, University of Palermo, Palermo, Italy
| | - Michael T Guarnieri
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - John Kowitz
- Two Frontiers Project, Fort Collins, Colorado, USA
| | - Elizabeth C Hann
- Wyss Institute of Biologically-Inspired Engineering, Boston, Massachusetts, USA
| | - Raja Dhir
- Two Frontiers Project, Fort Collins, Colorado, USA
- Seed Health, Venice, California, USA
| | - Paola Quatrini
- Two Frontiers Project, Fort Collins, Colorado, USA
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Christopher E Mason
- Two Frontiers Project, Fort Collins, Colorado, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | - George M Church
- Two Frontiers Project, Fort Collins, Colorado, USA
- Wyss Institute of Biologically-Inspired Engineering, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Marco Milazzo
- Two Frontiers Project, Fort Collins, Colorado, USA
- National Biodiversity Future Center, Palermo, Italy
- Department of Earth and Marine Sciences, University of Palermo, Palermo, Italy
| | - Braden T Tierney
- Two Frontiers Project, Fort Collins, Colorado, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
2
|
Höper R, Komkova D, Zavřel T, Steuer R. A quantitative description of light-limited cyanobacterial growth using flux balance analysis. PLoS Comput Biol 2024; 20:e1012280. [PMID: 39102434 PMCID: PMC11326710 DOI: 10.1371/journal.pcbi.1012280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/15/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
The metabolism of phototrophic cyanobacteria is an integral part of global biogeochemical cycles, and the capability of cyanobacteria to assimilate atmospheric CO2 into organic carbon has manifold potential applications for a sustainable biotechnology. To elucidate the properties of cyanobacterial metabolism and growth, computational reconstructions of genome-scale metabolic networks play an increasingly important role. Here, we present an updated reconstruction of the metabolic network of the cyanobacterium Synechocystis sp. PCC 6803 and its quantitative evaluation using flux balance analysis (FBA). To overcome limitations of conventional FBA, and to allow for the integration of experimental analyses, we develop a novel approach to describe light absorption and light utilization within the framework of FBA. Our approach incorporates photoinhibition and a variable quantum yield into the constraint-based description of light-limited phototrophic growth. We show that the resulting model is capable of predicting quantitative properties of cyanobacterial growth, including photosynthetic oxygen evolution and the ATP/NADPH ratio required for growth and cellular maintenance. Our approach retains the computational and conceptual simplicity of FBA and is readily applicable to other phototrophic microorganisms.
Collapse
Affiliation(s)
- Rune Höper
- Institute for Biology, Theoretical Biology (ITB), Humboldt-University of Berlin, Berlin, Germany
| | - Daria Komkova
- Institute for Biology, Theoretical Biology (ITB), Humboldt-University of Berlin, Berlin, Germany
| | - Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| | - Ralf Steuer
- Institute for Biology, Theoretical Biology (ITB), Humboldt-University of Berlin, Berlin, Germany
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
3
|
Mills LA, Moreno-Cabezuelo JÁ, Włodarczyk A, Victoria AJ, Mejías R, Nenninger A, Moxon S, Bombelli P, Selão TT, McCormick AJ, Lea-Smith DJ. Development of a Biotechnology Platform for the Fast-Growing Cyanobacterium Synechococcus sp. PCC 11901. Biomolecules 2022; 12:biom12070872. [PMID: 35883428 PMCID: PMC9313322 DOI: 10.3390/biom12070872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023] Open
Abstract
Synechococcus sp. PCC 11901 reportedly demonstrates the highest, most sustained growth of any known cyanobacterium under optimized conditions. Due to its recent discovery, our knowledge of its biology, including the factors underlying sustained, fast growth, is limited. Furthermore, tools specific for genetic manipulation of PCC 11901 are not established. Here, we demonstrate that PCC 11901 shows faster growth than other model cyanobacteria, including the fast-growing species Synechococcuselongatus UTEX 2973, under optimal growth conditions for UTEX 2973. Comparative genomics between PCC 11901 and Synechocystis sp. PCC 6803 reveal conservation of most metabolic pathways but PCC 11901 has a simplified electron transport chain and reduced light harvesting complex. This may underlie its superior light use, reduced photoinhibition, and higher photosynthetic and respiratory rates. To aid biotechnology applications, we developed a vitamin B12 auxotrophic mutant but were unable to generate unmarked knockouts using two negative selectable markers, suggesting that recombinase- or CRISPR-based approaches may be required for repeated genetic manipulation. Overall, this study establishes PCC 11901 as one of the most promising species currently available for cyanobacterial biotechnology and provides a useful set of bioinformatics tools and strains for advancing this field, in addition to insights into the factors underlying its fast growth phenotype.
Collapse
Affiliation(s)
- Lauren A. Mills
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (L.A.M.); (J.Á.M.-C.); (R.M.); (S.M.)
| | - José Ángel Moreno-Cabezuelo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (L.A.M.); (J.Á.M.-C.); (R.M.); (S.M.)
| | - Artur Włodarczyk
- Bondi Bio Pty Ltd., c/o Climate Change Cluster, University of Technology Sydney, 745 Harris Street, Ultimo, NSW 2007, Australia;
| | - Angelo J. Victoria
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; (A.J.V.); (A.N.); (A.J.M.)
| | - Rebeca Mejías
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (L.A.M.); (J.Á.M.-C.); (R.M.); (S.M.)
| | - Anja Nenninger
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; (A.J.V.); (A.N.); (A.J.M.)
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (L.A.M.); (J.Á.M.-C.); (R.M.); (S.M.)
| | - Paolo Bombelli
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
| | - Tiago T. Selão
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Alistair J. McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; (A.J.V.); (A.N.); (A.J.M.)
| | - David J. Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (L.A.M.); (J.Á.M.-C.); (R.M.); (S.M.)
- Correspondence:
| |
Collapse
|