1
|
Zhang T, Yao Y, Wang J, Li Y, He P, Pasupuleti V, Hu Z, Jia X, Song Q, Tian XL, Hu C, Chen Q, Wang QK. Haploinsufficiency of Klippel-Trenaunay syndrome gene Aggf1 inhibits developmental and pathological angiogenesis by inactivating PI3K and AKT and disrupts vascular integrity by activating VE-cadherin. Hum Mol Genet 2017; 25:5094-5110. [PMID: 27522498 DOI: 10.1093/hmg/ddw273] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/05/2016] [Indexed: 12/17/2022] Open
Abstract
Aggf1 is the first gene identified for Klippel-Trenaunay syndrome (KTS), and encodes an angiogenic factor. However, the in vivo roles of Aggf1 are incompletely defined. Here we demonstrate that Aggf1 is essential for both physiological angiogenesis and pathological tumour angiogenesis in vivo. Two lines of Aggf1 knockout (KO) mice showed a particularly severe phenotype as no homozygous embryos were observed and heterozygous mice also showed embryonic lethality (haploinsufficient lethality) observed only for Vegfa and Dll4. Aggf1+/- KO caused defective angiogenesis in yolk sacs and embryos. Survived adult heterozygous mice exhibit frequent haemorrhages and increased vascular permeability due to increased phosphorylation and reduced membrane localization of VE-cadherin. AGGF1 inhibits VE-cadherin phosphorylation, increases plasma membrane VE-cadherin in ECs and in mice, blocks vascular permeability induced by ischaemia-reperfusion (IR), restores depressed cardiac function and contraction, reduces infarct sizes, cardiac fibrosis and necrosis, haemorrhages, edema, and macrophage density associated with IR. Mechanistically, AGGF1 promotes angiogenesis by activating catalytic p110α subunit and p85α regulatory subunit of PI3K, leading to activation of AKT, GSK3β and p70S6K. AKT activation is significantly reduced in heterozygous KO mice and isolated KO ECs, which can be rescued by exogenous AGGF1. ECs from KO mice show reduced capillary angiogenesis, which is rescued by AGGF1 and AKT. Tumour growth/angiogenesis is reduced in heterozygous mice, which was associated with reduced activation of p110α, p85α and AKT. Together with recent identification of somatic mutations in p110α (encoded by PIK3CA), our data establish a potential mechanistic link between AGGF1 and PIK3CA, the two genes identified for KTS.
Collapse
Affiliation(s)
- Teng Zhang
- The Center for Cardiovascular Genetics, Department of Molecular Cardiology, NE40, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, OH, USA
| | - Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Jingjing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Yong Li
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, OH, USA
| | - Ping He
- The Center for Cardiovascular Genetics, Department of Molecular Cardiology, NE40, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, OH, USA
| | - Vinay Pasupuleti
- The Center for Cardiovascular Genetics, Department of Molecular Cardiology, NE40, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, OH, USA
| | - Zhengkun Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Xinzhen Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Qixue Song
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Xiao-Li Tian
- The Center for Cardiovascular Genetics, Department of Molecular Cardiology, NE40, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, OH, USA
| | - Changqing Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Qiuyun Chen
- The Center for Cardiovascular Genetics, Department of Molecular Cardiology, NE40, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, OH, USA
| | - Qing Kenneth Wang
- The Center for Cardiovascular Genetics, Department of Molecular Cardiology, NE40, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, OH, USA.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
3
|
Gerber PA, Hippe A, Buhren BA, Müller A, Homey B. Chemokines in tumor-associated angiogenesis. Biol Chem 2010; 390:1213-23. [PMID: 19804363 DOI: 10.1515/bc.2009.144] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor growth is dependent on several key factors. Apart from immune escape and an efficient blockade of apoptotic signals, tumors require oxygen and nutrients to grow past a diameter of 2 microm. Therefore, it is of vital importance for the tumor to facilitate tumor-associated angiogenesis, e.g., the de novo formation of new blood vessels. In addition to established and key angiogenic factors, such as vascular endothelial growth factor, chemokines, a superfamily of cytokine-like proteins that bind to seven transmembrane-spanning G-protein-coupled receptors, have been associated with angiogenesis under homeostatic conditions. Chemokines were initially identified as key factors that control the directional migration of leukocytes, stem cells and cancer cells in vitro and which critically regulate their trafficking in vivo. Recently their role in establishing a favorable microenvironment for tumor-associated angiogenesis, a process that requires complex bidirectional interactions of the tumor and associated vessels, has been the focus of research. Chemokine-promoted angiogenesis not only facilitates tumor growth by supplying nutrients and oxygen but it is also a prerequisite to tumor metastasis. Hence, the pharmacologic control of tumor angiogenesis presents a promising strategy for novel anticancer therapeutics. Here, we discuss the current pathogenetic concepts of tumor-associated angiogenesis in the context of chemokines and their receptors and highlight promising therapeutic strategies.
Collapse
Affiliation(s)
- Peter Arne Gerber
- Department of Dermatology, University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
5
|
U94 of human herpesvirus 6 inhibits in vitro angiogenesis and lymphangiogenesis. Proc Natl Acad Sci U S A 2009; 106:20446-51. [PMID: 19918067 DOI: 10.1073/pnas.0905535106] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) is a lymphotropic virus, but recent observations showed that also vascular endothelial cells (ECs) are susceptible to infection, both in vivo and in vitro. The observation that lymph nodes are a site of viral persistence suggests that lymphatic ECs (LECs) might be even more relevant for HHV-6 biology than vascular ECs. Here, we provide evidence that HHV-6 can infect LECs in vitro and establish a latent infection. Thus HHV-6 infection induces the loss of angiogenic properties both in LECs and in vascular ECs, as shown by the inability to form capillary-like structures and to seal wound scratches. The antiangiogenic effects observed in infected cells are associated to the expression of HHV-6 U94/rep, a latency-associated gene. In fact, transfection of U94/rep or addition of recombinant U94/REP protein to ECs inhibits the formation of in vitro capillary-like structures, reduces migration of ECs, and blocks angiogenesis, rendering rat aortic rings insensitive to VEGF-induced vasculogenetic activity. The ability of U94/rep to block different angiogenetic steps may lead to approaches in the potential control of the proliferation of blood and lymphatic vessels.
Collapse
|
8
|
Vural E, Ramakrishnan J, Cetin N, Buckmiller L, Suen JY, Fan CY. The expression of vascular endothelial growth factor and its receptors in port-wine stains. Otolaryngol Head Neck Surg 2008; 139:560-4. [PMID: 18922344 DOI: 10.1016/j.otohns.2008.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/02/2008] [Accepted: 07/10/2008] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate the expression of vascular endothelial growth factor (VEGF) and its receptor (VEGF-R2) in port-wine stains (PWSs). DESIGN An immunohistochemistry (IHC) study on formalin-fixed, paraffin-embedded specimens. METHODS Representative sections from surgical resection specimens of 12 PWS patients and 12 control specimens stained with routine IHC by using polyclonal anti-VEGF and anti-VEGF-R2 antibodies. Slides were evaluated semiquantitatively for the intensity of staining for VEGF and VEGF-R2 by using a scoring system varying from 0 to 3+. RESULTS PWS specimens showed statistically significant overexpression of both VEGF and VEGF-R2 molecules when compared with control specimens (P < 0.005). CONCLUSIONS VEGF and its receptor may play an important role in the pathogenesis of PWS. It is possible that PWS may progress by hyperplasia in addition to hypertrophy. VEGF-R blockade may have a potential role as a targeted approach in the treatment of this disfiguring condition in the future.
Collapse
Affiliation(s)
- Emre Vural
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA.
| | | | | | | | | | | |
Collapse
|