1
|
Xue X, Wang Z, Zhao C, Qiao Y, Wang P, Wang J, Shi J, Zhang J. Mesoporous Cu 2O coated Au/Ag plasmonic nanocomposites as SERS sensing platform for ultrasensitive detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:126061. [PMID: 40090109 DOI: 10.1016/j.saa.2025.126061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Surface enhanced Raman scattering (SERS) is a suited detection technique for trace and ultrasensitive detection that extends even to single molecule levels. However, SERS application is currently limited by three main factors: 1) how to create more hotspots to enhance the sensitivity of SERS; 2) how to enrich trace target molecules in SERS hotspots; and 3) how to maintain the stability and reproducibility of SERS detection under environmental interference. In this study, mesoporous Cu2O coated Au/Ag plasmonic nanocomposites (NCs) were designed and prepared as SERS substrates. The tightly packed Au/Ag nanoaggregates (NAs) create more hotspots, oxygen vacancies in Cu2O can also enhances Raman signal by photoinduced charge transferring. Meanwhile, mesoporous Cu2O coating is beneficial for enriching more target molecules, so the as-prepared Au/Ag@Cu2O NCs showed excellent SERS sensitivity. When the target molecules 4-mercaptobenzoic acid (4-MBA) was detected on the Au/Ag@Cu2O substrate, the substrate showed high SERS activity. The enhancement factor reached as high as 3.78 × 106, and the detection limit was as low as 10-11 M. Meanwhile, the SERS spectra demonstrate excellent selectivity and reproducibility. In addition, the Au/Ag@Cu2O NCs substrate was applied to detect volatile organic compounds (VOC) pyridine molecules in the air, and when it was naturally adsorbed in air for 20 min, it showed an obvious SERS signal of pyridine. Therefore, these Au/Ag@Cu2O NCs with high SERS detection performance have important practical value in applications of volatile organic gas molecule.
Collapse
Affiliation(s)
- Xiangxin Xue
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China; The Joint Laboratory of Intelligent Manufacturing of Energy and Environmental Materials, Changchun 130103, PR China.
| | - Zhuo Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China
| | - Cuimei Zhao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China
| | - Yu Qiao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China.
| | - Ping Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China
| | - Jing Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China
| | - Jinghui Shi
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China
| | - Jie Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| |
Collapse
|
2
|
Barveen NR, Chinnapaiyan S, Zeng CW, Huang CH, Lin YY, Cheng YW. Plasmonic Au-NPs photodecorated on NiCoLDH nanosheets as a flexible SERS sensor for the real-time detection of fipronil. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135907. [PMID: 39326143 DOI: 10.1016/j.jhazmat.2024.135907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Rapid extraction and detection of probe molecules from curved surfaces is critical for on-site and real-time detection. In this study, a flexible platform was developed using carbon cloth (CC) to create honeycomb-like nickel cobalt layered double hydroxides (NiCoLDH) nanosheets via a simple electrodeposition technique, which were then decorated with gold nanoparticles (Au-NPs) via photodeposition process. The Au-NPs/NiCoLDH/CC was designed as a surface-enhanced Raman scattering (SERS) substrate for detecting the broad-spectrum insecticide, Fipronil (FP). The fabricated sensor achieves a superior SERS activity due to the electrodeposited NiCoLDH, which provides the charge-transfer effect, and the photodeposited Au-NPs, which generate efficient SERS hotspots through the electromagnetic effect. The Density Functional Theory (DFT) calculation was used to estimate the optimal geometry and frontier molecular orbital diagrams of the FP molecules. The influence of electrodeposition time on NiCoLDH production and Au-NPs decorating quantity was investigated in detail. Furthermore, the flexible SERS sensor has excellent sensitivity, homogeneity, a low limit of detection (LOD), and high reproducibility for FP detection. Even after 40 cycles of bending and torsion, the SERS substrate maintained excellent mechanical endurance. Through a direct-sampling approach, FP molecules on the surfaces and mesocarp region of grapes and tomatoes were successfully detected with lower LOD. These findings highlight the outstanding potential of the produced flexible SERS sensor for real-time and on-site insecticide detection, making it valuable for food security analysis and monitoring.
Collapse
Affiliation(s)
- Nazar Riswana Barveen
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Sathishkumar Chinnapaiyan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Che-Wei Zeng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Yen-Yu Lin
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Yu-Wei Cheng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; R&D Center of Biochemical Engineering Technology, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| |
Collapse
|
3
|
Zhao N, Shi P, Wang Z, Sun Z, Sun K, Ye C, Fu L, Lin CT. Advances in Surface-Enhanced Raman Spectroscopy for Urinary Metabolite Analysis: Exploiting Noble Metal Nanohybrids. BIOSENSORS 2024; 14:564. [PMID: 39727829 DOI: 10.3390/bios14120564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
This review examines recent advances in surface-enhanced Raman spectroscopy (SERS) for urinary metabolite analysis, focusing on the development and application of noble metal nanohybrids. We explore the diverse range of hybrid materials, including carbon-based, metal-organic-framework (MOF), silicon-based, semiconductor, and polymer-based systems, which have significantly improved SERS performance for detecting key urinary biomarkers. The principles underlying SERS enhancement in these nanohybrids are discussed, elucidating both electromagnetic and chemical enhancement mechanisms. We analyze various fabrication methods that enable precise control over nanostructure morphology, composition, and surface chemistry. The review critically evaluates the analytical performance of different hybrid systems for detecting specific urinary metabolites, considering factors such as sensitivity, selectivity, and stability. We address the analytical challenges associated with SERS-based urinary metabolite analysis, including sample preparation, matrix effects, and data interpretation. Innovative solutions, such as the integration of SERS with microfluidic devices and the application of machine learning algorithms for spectral analysis, are highlighted. The potential of these advanced SERS platforms for point-of-care diagnostics and personalized medicine is discussed, along with future perspectives on wearable SERS sensors and multi-modal analysis techniques. This comprehensive overview provides insights into the current state and future directions of SERS technology for urinary metabolite detection, emphasizing its potential to revolutionize non-invasive health monitoring and disease diagnosis.
Collapse
Affiliation(s)
- Ningbin Zhao
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Peizheng Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Zengxian Wang
- Taiyuan Municipal Construction Group Co., Ltd., Taiyuan 030002, China
| | - Zhuang Sun
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Kaiqiang Sun
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Gao S, Zhang Y, Cui K, Zhang S, Qiu Y, Liao Y, Wang H, Yu S, Ma L, Chen H, Ji M, Fang X, Lu W, Xiao Z. Self-stacked small molecules for ultrasensitive, substrate-free Raman imaging in vivo. Nat Biotechnol 2024:10.1038/s41587-024-02342-9. [PMID: 39169265 DOI: 10.1038/s41587-024-02342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/26/2024] [Indexed: 08/23/2024]
Abstract
Raman spectroscopy using surface-enhanced Raman scattering (SERS) nanoprobes represents an ultrasensitive and high-precision technique for in vivo imaging. Clinical translation of SERS nanoprobes has been hampered by biosafety concerns about the metal substrates used to enhance Raman signals. We report a set of small molecules with bis-thienyl-substituted benzobisthiadiazole structures that enhance Raman signal through self-stacking rather than external substrates. In our technique, called stacking-induced charge transfer-enhanced Raman scattering (SICTERS), the self-stacked small molecules form an ordered spatial arrangement that enables three-dimensional charge transfer between neighboring molecules. The Raman scattering cross-section of SICTERS nanoprobes is 1350 times higher than that of conventional SERS gold nanoprobes of similar particle size. SICTERS outperforms SERS in terms of in vivo imaging sensitivity, resolution and depth. SICTERS is capable of noninvasive Raman imaging of blood and lymphatic vasculatures, which has not been achieved by SERS. SICTERS represents an alternative technique to enhance Raman scattering for guiding the design of ultrasensitive substrate-free Raman imaging probes.
Collapse
Affiliation(s)
- Shuai Gao
- School of Pharmacy & Minhang Hospital, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education, Fudan University, Shanghai, China
| | - Yongming Zhang
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Cui
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sihang Zhang
- School of Pharmacy & Minhang Hospital, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education, Fudan University, Shanghai, China
| | - Yuanyuan Qiu
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunhui Liao
- School of Pharmacy & Minhang Hospital, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education, Fudan University, Shanghai, China
| | - Haoze Wang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Sheng Yu
- School of Pharmacy & Minhang Hospital, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education, Fudan University, Shanghai, China
| | - Liyang Ma
- State Key Laboratory of Surface Physics and Department of Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai, China
| | - Hongzhuan Chen
- Shuguang Lab for Future Health, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai, China
| | - Xiaohong Fang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Wei Lu
- School of Pharmacy & Minhang Hospital, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education, Fudan University, Shanghai, China.
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Zhong X, Liu P, Wen J, Qiu Y, Zhang M, Xie D, Wang S, Xie S, Cheng F. An in-situ method for SERS substrate preparation and optimization based on galvanic replacement reaction. Anal Chim Acta 2024; 1303:342512. [PMID: 38609275 DOI: 10.1016/j.aca.2024.342512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Various surface-enhanced Raman spectroscopy (SERS) substrate preparation methods have been reported, however, how to tune the "gap" between nanostructures to make more "hot spots" is still a barrier that restricts their application. The gap between nanostructures is usually fixed when the substrates are prepared. In other words, it is hard to tune interparticle distances for maximum electromagnetic coupling during substrate preparation process. Therefore, an in-situ substrate optimization method that could monitor the SERS signal intensity changes, i.e., to find the optimum gap width and particle size, during substrate preparation process is needed. RESULTS A method based on the galvanic replacement reaction (GRR) is proposed for the in-situ gap width tuning between nanostructures as well as for the optimization of SERS substrates. Noble metal nanoparticles (NPs) form and grow on the sacrificial templates' surface while noble metal ions are reduced by sacrificial metal (oxides) in GRR. Along with the fresh and clean NPs' surface generated, the gap between two noble metal NPs decreases with the growth of the NPs. To demonstrate this strategy, cuprous oxide/Ti (Cu2O/Ti) sacrificial templates were prepared, and then a GRR was carried out with HAuCl4. The real-time SERS detection during GRR show that the optimum reaction time (ORT) is 300 ± 30 s. Furthermore, SERS performance testing was conducted on the optimized substrate, revealing that the detection limit for crystal violet can reach 1.96 × 10-11 M, confirming the feasibility of this method. SIGNIFICANCE AND NOVELTY By monitoring the in-situ SERS signal of probes during GRR will obtain an "optimal state" of the SERS substrate with optimal gap width and particle size. The SERS substrate preparation and optimization strategy proposed in this article not only provides a simple, efficient, and low-cost method to fabricate surface-clean noble NPs but also paves the way for the in-situ optimization of NPs size and gap width between NPs which could achieve wider applications of SERS.
Collapse
Affiliation(s)
- Xing Zhong
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Peng Liu
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Jiaxing Wen
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yongfu Qiu
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Dong Xie
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Shoushan Wang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Shilei Xie
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| |
Collapse
|
6
|
Wu Z, Zheng C, Lin Q, Fu Q, Zhao H, Lei Y. Unique gap-related SERS behaviors of p-aminothiophenol molecules absorbed on TiO 2surface in periodic TiO 2/Ni nanopillar arrays. NANOTECHNOLOGY 2024; 35:215501. [PMID: 38368630 DOI: 10.1088/1361-6528/ad2a5a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/18/2024] [Indexed: 02/20/2024]
Abstract
We observed a unique interpillar gap-related surface-enhanced Raman scattering (SERS) behavior ofp-aminothiophenol (PATP) molecules from periodic TiO2nanopillar arrays with three gap sizes of 191, 297 and 401 nm, which is completely different from that on Ag and Ni nanopillar arrays. Especially, the gap-size-dependent charge-transfer (CT) resonance enhancement from TiO2/Ni has been indicated through comparisons of variation trend of SERS intensities with inter-pillar gap size between TiO2/Ni and Ag/TiO2/Ni as well as Ni nanoarrays, and been confirmed by spectra of ultraviolet-visible absorption and photoluminescence. Results demonstrate that the CT resonance enhancement is more susceptible to the change of the gap size compared with the surface plasmon resonance (SPR) enhancement in TiO2/Ni nanoarrays. Hence, SPR and CT enhancement showing different variation trend and rate with the gap size that leads to a different relative contribution of CT resonance to the overall SERS enhancement as gap size changes, and consequently results in a unique gap-related SERS behavior for TiO2/Ni nanoarrays. The present study is not only helpful for investigating SERS mechanism for semiconductors but also providing a method to design and optimize periodic metal/semiconductor SERS substrates in a controllable way.
Collapse
Affiliation(s)
- Zhijun Wu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Chunfang Zheng
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Qi Lin
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Qun Fu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Huaping Zhao
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| |
Collapse
|
7
|
Jin S, Zhang D, Yang B, Guo S, Chen L, Jung YM. Noble metal-free SERS: mechanisms and applications. Analyst 2023; 149:11-28. [PMID: 38051259 DOI: 10.1039/d3an01669b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a very important tool in vibrational spectroscopy. The coupling of nanomaterials induces local surface plasmon resonance (LSPR), which contributes greatly to SERS. Due to its remarkable sensitivity in trace detection, SERS has gained prominence in the fields of catalysis, biosensors, drug tracking, and optoelectronic devices. SERS activity is believed to be closely related to the LSPR and charge transfer (CT) of the material. Noble metal nanostructures have been commonly used as SERS-active substrates due to their strong local electric fields and relatively mature preparation, application, and enhancement mechanisms. In recent years, SERS research based on semiconductor materials has attracted significant attention because semiconductor materials have advantages such as repeatable preparation, simple pretreatment, stable SERS spectra and superior biocompatibility, stability, and reproducibility. Semiconductor-based SERS has the potential to enrich SERS theory and applications. Thus, the development of semiconductor materials will introduce a new epoch for SERS-based research. In this review, we outline the two main kinds of semiconductor SERS-active substrates: inorganic and organic semiconductor SERS-active substrates. We also provide an overview of the SERS mechanism for different kinds of materials and SERS-based applications.
Collapse
Affiliation(s)
- Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea.
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, USA
| | - Daxin Zhang
- College of Science, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Bo Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, P.R. China.
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Lei Chen
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea.
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
8
|
Fan T, Cai L, Huang Z, Tang H, Zhang L, Li Z. Spontaneous Redox-Reaction-Driven Growth of Ag Nanoparticles on Co(OH) 2 Nanoflower Arrays for Surface-Enhanced Raman Scattering. Inorg Chem 2023. [PMID: 37463408 DOI: 10.1021/acs.inorgchem.3c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
A simple and reliable method is developed to fabricate Ag-nanoparticle-decorated Co(OH)2 nanoflowers grafted on polyacrylonitrile (PAN) nanopillar arrays as uniform and sensitive surface-enhanced Raman scattering (SERS) substrates. First, Co(OH)2-nanosheet-assembled nanoflowers are achieved on the highly uniform PAN nanopillar arrays via electrochemical deposition. Then, Ag nanoparticles (Ag-NPs) are decorated onto the Au-nanoparticle-precoated Co(OH)2 nanoflowers based on a spontaneous redox reaction (SRR) between the silver ions and Co(OH)2 nanosheets at room temperature. Ag-NPs can be successfully in situ synthesized on the Co(OH)2 nanoflowers, and Au nanoparticles precoated on the surface of the Co(OH)2 nanosheets can ensure that the Co(OH)2 nanoflower structure does not collapse. Because of the highly uniform PAN nanopillar arrays and the high-density sub-10 nm gaps between the neighboring Ag-NPs on the surface of the Co(OH)2 nanoflowers, the hierarchical three-dimensional Ag@Co(OH)x grown on PAN nanopillar arrays can produce a reproducible and sensitive SERS effect. To verify the SERS performance of the substrate, 4-aminothiophenol (4-ATP) is used as the probe molecule, and the Ag@Co(OH)x grown on PAN nanopillar arrays is employed as the SERS substrate. As a result, 4-ATP concentrations as low as 10-10 M can still be identified, exhibiting high SERS activity. Additionally, the relative standard deviation value of the main characteristic peak of 10-5 M 4-ATP is 9.43%, indicating good uniformity of the SERS signal of the substrate. The SRR between silver ions and Co(OH)2 can provide a simple route to prepare heterostructures as SERS substrates, which has great potential for application in the field of analysis.
Collapse
Affiliation(s)
- Tingting Fan
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei 230036, China
| | - Li Cai
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei 230036, China
| | - Zhulin Huang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Haibin Tang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Lijun Zhang
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei 230036, China
| | - Zhongbo Li
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
9
|
Li Y, Liao H, Wu S, Weng X, Wang Y, Liu L, Qu J, Song J, Ye S, Yu X, Chen Y. ReS 2 Nanoflowers-Assisted Confined Growth of Gold Nanoparticles for Ultrasensitive and Reliable SERS Sensing. Molecules 2023; 28:molecules28114288. [PMID: 37298764 DOI: 10.3390/molecules28114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
ReS2, as a new member of transition metal dichalcogenides (TMDCs), has emerged as a promising substrate for semiconductor surface-enhanced Raman spectroscopy (SERS) due to its unique optoelectronic properties. Nevertheless, the sensitivity of the ReS2 SERS substrate poses a significant challenge to its widespread application in trace detection. In this work, we present a reliable approach for constructing a novel ReS2/AuNPs SERS composite substrate, enabling ultrasensitive detection of trace amounts of organic pesticides. We demonstrate that the porous structures of ReS2 nanoflowers can effectively confine the growth of AuNPs. By precisely controlling the size and distribution of AuNPs, numerous efficient and densely packed "hot spots" were created on the surface of ReS2 nanoflowers. As a result of the synergistic enhancement of the chemical and electromagnetic mechanisms, the ReS2/AuNPs SERS substrate demonstrates high sensitivity, good reproducibility, and superior stability in detecting typical organic dyes such as rhodamine 6G and crystalline violet. The ReS2/AuNPs SERS substrate shows an ultralow detection limit of 10-10 M and a linear detection of organic pesticide molecules within 10-6-10-10 M, which is significantly lower than the EU Environmental Protection Agency regulation standards. The strategy of constructing ReS2/AuNPs composites would contribute to the development of highly sensitive and reliable SERS sensing platforms for food safety monitoring.
Collapse
Affiliation(s)
- Yongping Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Haohui Liao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Shaobing Wu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Shuai Ye
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Xiantong Yu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Yu Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Colniță A, Toma VA, Brezeștean IA, Tahir MA, Dina NE. A Review on Integrated ZnO-Based SERS Biosensors and Their Potential in Detecting Biomarkers of Neurodegenerative Diseases. BIOSENSORS 2023; 13:bios13050499. [PMID: 37232860 DOI: 10.3390/bios13050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) applications in clinical diagnosis and spectral pathology are increasing due to the potential of the technique to bio-barcode incipient and differential diseases via real-time monitoring of biomarkers in fluids and in real-time via biomolecular fingerprinting. Additionally, the rapid advancements in micro/nanotechnology have a visible influence in all aspects of science and life. The miniaturization and enhanced properties of materials at the micro/nanoscale transcended the confines of the laboratory and are revolutionizing domains such as electronics, optics, medicine, and environmental science. The societal and technological impact of SERS biosensing by using semiconductor-based nanostructured smart substrates will be huge once minor technical pitfalls are solved. Herein, challenges in clinical routine testing are addressed in order to understand the context of how SERS can perform in real, in vivo sampling and bioassays for early neurodegenerative disease (ND) diagnosis. The main interest in translating SERS into clinical practice is reinforced by the practical advantages: portability of the designed setups, versatility in using nanomaterials of various matter and costs, readiness, and reliability. As we will present in this review, in the frame of technology readiness levels (TRL), the current maturity reached by semiconductor-based SERS biosensors, in particular that of zinc oxide (ZnO)-based hybrid SERS substrates, is situated at the development level TRL 6 (out of 9 levels). Three-dimensional, multilayered SERS substrates that provide additional plasmonic hot spots in the z-axis are of key importance in designing highly performant SERS biosensors for the detection of ND biomarkers.
Collapse
Affiliation(s)
- Alia Colniță
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Vlad-Alexandru Toma
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor, 400006 Cluj-Napoca, Romania
- Institute of Biological Research, Department of Biochemistry and Experimental Biology, 48 Republicii, Branch of NIRDBS Bucharest, 400015 Cluj-Napoca, Romania
| | - Ioana Andreea Brezeștean
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Muhammad Ali Tahir
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Nicoleta Elena Dina
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Tan Y, Yang K, Zhang X, Zhou Z, Xu Y, Xie A, Xue C. Stretchable and Flexible Micro-Nano Substrates for SERS Detection of Organic Dyes. ACS OMEGA 2023; 8:14541-14548. [PMID: 37125120 PMCID: PMC10134225 DOI: 10.1021/acsomega.3c00179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a precise and noninvasive analytical technique to identify vibrational fingerprints of trace analytes with sensitivity down to the single-molecule level. However, substrates can influence this capability, and current SERS techniques lack uniform, reproducible, and stable substrates to control plasma hot spots over a wide spectral range. Herein, we demonstrate a flexible SERS substrate via longitudinal stretching of a polydimethylsiloxane (PDMS) film. This substrate, after stretching and shrinking, exhibits an irregular wrinkled structure with abundant gaps and grooves that function as hot spots, thereby improving the hydrophobic properties of the material. To investigate the enhancement effect of Raman signals, silver nanoparticles (AgNPs) were mixed with Rhodamine 6G (R6G) solution, and the obtained blend was dropped onto the PDMS film to form a coffee ring pattern. According to the results, the hydrophobicity of the substrate increases with the degree of PDMS stretching, achieving the optimal level at 150% stretching. Moreover, the increase in hydrophobicity makes the measured molecules more aggregated, which enhances the Raman signal. The stretching and shrinkage of the PDMS film lead to a much higher density of nanogaps among nanoparticles and nanogrooves, which serve as multiple hot spots. Being highly localized regions of intense local fields, these hot spots make a significant contribution to SERS performance, improving the sensitivity and reproducibility of the method. In particular, the relative standard deviation (RSD) was found to be 2.5544%, and the detection limit was 1 × 10-7 M. Therefore, SERS using stretchable and flexible micro-nano substrates is a promising way for detecting dyes in wastewater.
Collapse
|
12
|
Ji C, Lu J, Shan B, Li F, Zhao X, Yu J, Xu S, Man B, Zhang C, Li Z. The Origin of Mo 2C Films for Surface-Enhanced Raman Scattering Analysis: Electromagnetic or Chemical Enhancement? J Phys Chem Lett 2022; 13:8864-8871. [PMID: 36125003 DOI: 10.1021/acs.jpclett.2c02392] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The relatively weak Raman enhanced factors of semiconductor-based substrate limit its further application in surface-enhanced Raman scattering (SERS). Here, a kind of two-dimensional (2D) semimetal material, molybdenum carbide (Mo2C) film, is prepared via a chemical vapor deposition (CVD) method, and the origin of SERS is investigated for the first time. The detection limits of the prepared Mo2C films for crystal violet (CV) and rhodamine 6G (R6G) molecules are low at 10-6 M and 10-8 M, respectively. Our detailed theoretical analysis, based on density functional theory and the finite element method, demonstrates that the enhancement of the 2D Mo2C film is indeed CM in nature rather than the EM effects. Besides, the basic doping strategies are proposed to further optimize the SERS sensitivity of Mo2C for Fermi level regulation. We believe this work will provide a helpful guide for developing a highly sensitive semimetal SERS substrate.
Collapse
Affiliation(s)
- Chang Ji
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| | - Jinxuan Lu
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| | - Baojie Shan
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| | - Fengrui Li
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| | - Xiaofei Zhao
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| | - Jing Yu
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| | - Shicai Xu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, P.R. China
| | - Baoyuan Man
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| | - Chao Zhang
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| | - Zhen Li
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China
| |
Collapse
|
13
|
Cystine-assisted accumulation of gold nanoparticles on ZnO to construct a sensitive surface-enhanced Raman spectroscopy substrate. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Wang C, Guo X, Fu Q. TiO2 Thickness-Dependent Charge Transfer in an Ordered Ag/TiO2/Ni Nanopillar Arrays Based on Surface-Enhanced Raman Scattering. MATERIALS 2022; 15:ma15103716. [PMID: 35629741 PMCID: PMC9146224 DOI: 10.3390/ma15103716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/04/2023]
Abstract
In this study, an ordered Ag/TiO2/Ni nanopillar arrays hybrid substrate was designed, and the charge transfer (CT) process at the metal–semiconductor and substrate–molecule interface was investigated based on the surface-enhanced Raman scattering (SERS) spectra of 4-Aminothiophenol (PATP) absorbed on the composite system. The surface plasmon resonance (SPR) absorption of Ag changes due to the regulation of TiO2 thickness, which leads to different degrees of CT enhancement in the system. The CT degree of SERS spectra obtained at different excitation wavelengths was calculated to study the contribution of CT enhancement to SERS, and a TiO2thickness-dependent CT enhancement mechanism was proposed. Furthermore, Ag/TiO2/Ni nanopillar arrays possessed favorable detection ability and uniformity, which has potential as a SERS-active substrate.
Collapse
Affiliation(s)
| | | | - Qun Fu
- Correspondence: (C.W.); (Q.F.)
| |
Collapse
|
15
|
Wang X, Zhang E, Shi H, Tao Y, Ren X. Semiconductor-based surface enhanced Raman scattering (SERS): from active materials to performance improvement. Analyst 2022; 147:1257-1272. [PMID: 35253817 DOI: 10.1039/d1an02165f] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Surface enhanced Raman scattering (SERS) is a powerful spectral analysis technique and has exhibited remarkable application prospects in various fields. The design and fabrication of high-performance SERS substrates is key to promoting the development of SERS technology. Apart from noble metal substrates, non-metal substrates based on semiconductor materials have received increasing attention in recent years owing to their unique physical, chemical, and optical properties. However, compared with noble metal substrates, most semiconductor substrates show weak Raman enhancement ability. Therefore, exploring effective strategies to improve the SERS sensitivity is an urgent task. Numerous reviews have outlined the research progress of semiconductor SERS substrates, which mainly focused on summarizing the material category of semiconductor substrates. However, reviews that systematically summarize the strategies for improving the SERS performance of semiconductor substrates are lacking. In this review, we comprehensively discuss the research on semiconductor SERS from the aspects of mechanism, materials, and modification. Firstly, the Raman enhancement mechanism of semiconductor substrates and the SERS-active materials are discussed. Then, we summarize several effective approaches to boost the SERS performance of semiconductor substrates. In conclusion, we propose some prospects for this field.
Collapse
Affiliation(s)
- Xuejiao Wang
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Erjin Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Huimin Shi
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yufeng Tao
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Xudong Ren
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
16
|
Lu Y, Lin L, Ye J. Human metabolite detection by surface-enhanced Raman spectroscopy. Mater Today Bio 2022; 13:100205. [PMID: 35118368 PMCID: PMC8792281 DOI: 10.1016/j.mtbio.2022.100205] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/17/2022]
Abstract
Metabolites are important biomarkers in human body fluids, conveying direct information of cellular activities and physical conditions. Metabolite detection has long been a research hotspot in the field of biology and medicine. Surface-enhanced Raman spectroscopy (SERS), based on the molecular “fingerprint” of Raman spectrum and the enormous signal enhancement (down to a single-molecule level) by plasmonic nanomaterials, has proven to be a novel and powerful tool for metabolite detection. SERS provides favorable properties such as ultra-sensitive, label-free, rapid, specific, and non-destructive detection processes. In this review, we summarized the progress in recent 10 years on SERS-based sensing of endogenous metabolites at the cellular level, in tissues, and in biofluids, as well as drug metabolites in biofluids. We made detailed discussions on the challenges and optimization methods of SERS technique in metabolite detection. The combination of SERS with modern biomedical technology were also anticipated.
Collapse
Affiliation(s)
- Yao Lu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Li Lin
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
- Corresponding author.
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- Corresponding author. State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|