1
|
Jang J, Koh B, Lee K. Discovery of benzimidazole-2-amide BNZ-111 as new tubulin inhibitor. Bioorg Med Chem Lett 2024; 113:129953. [PMID: 39270806 DOI: 10.1016/j.bmcl.2024.129953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Methyl benzimidazole-2-carbamate anthelmintics are a class of oral drugs to treat parasitic worm infections via microtubule disruption for non-systemic indications and currently in use. In order to use for anticancer treatment, the new benzimidazoles needs to improve solubility and pharmacokinetic parameters while maintaining its cellular potency as for systemic drug. Structure-activity-relationship on the benzimidazole is thoroughly examined and a novel benzimidazole-2 propionamide BNZ-111 is identified having good oral exposure and bioavailability in rat. Molecular docking study suggests BNZ-111 have a specific binding mode to the β subunit of curved tubulin. BNZ-111 is potent to cancer cells and possesses good drug-like properties as oral drug. Especially, BNZ-111 is not a P-gp substrate and it demonstrates its efficacy over Paclitaxel-resistance tumor in vivo.
Collapse
Affiliation(s)
- Jiyoon Jang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
| | - Byumseok Koh
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea; Medicinal Chemistry & Pharmacology, Korea National University of Science & Technology, Daejeon 34113, South Korea.
| | - Kwangho Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea; Medicinal Chemistry & Pharmacology, Korea National University of Science & Technology, Daejeon 34113, South Korea.
| |
Collapse
|
2
|
Koh B, Ryu JY, Noh JJ, Hwang JR, Choi JJ, Cho YJ, Jang J, Jo JH, Lee K, Lee JW. Anti-cancer effects of benzimidazole derivative BNZ-111 on paclitaxel-resistant ovarian cancer. Gynecol Oncol 2024; 188:60-70. [PMID: 38936282 DOI: 10.1016/j.ygyno.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Ovarian cancer, a leading cause of cancer-related deaths in women, remains a formidable challenge, especially in the context of platinum-resistant disease. This study investigated the potential of the benzimidazole derivative BNZ-111 as a novel treatment strategy for platinum-resistant ovarian cancer. METHODS The human EOC cell lines A2780, HeyA8, SKOV3ip1, A2780-CP20, HeyA8-MDR, and SKOV3-TR were treated with BNZ-111, and cell proliferation, apoptosis, and cell cycle were assessed. RESULTS It demonstrated strong cytotoxicity in both chemo-sensitive and chemo-resistant epithelial ovarian cancer cell lines, inducing apoptosis and G2/M cell cycle arrest. In vivo experiments using orthotopic and patient-derived xenograft models showed significant tumor growth inhibition without apparent toxicity to vital organs. Unlike paclitaxel, BNZ-111 proved effective in paclitaxel-resistant cells, potentially by bypassing interaction with MDR1 and modulating β-3 tubulin expression to suppress microtubule dynamics. CONCLUSION BNZ-111, with favorable drug-like properties, holds promise as a therapeutic option for platinum-resistant ovarian cancer, addressing a critical clinical need in gynecologic oncology.
Collapse
Affiliation(s)
- Byumseok Koh
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Medicinal Chemistry & Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Ji-Yoon Ryu
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Joseph J Noh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jae Ryoung Hwang
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jung-Joo Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Young-Jae Cho
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jiyoon Jang
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jeong Hyeon Jo
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kwangho Lee
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Medicinal Chemistry & Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea.
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.
| |
Collapse
|
3
|
Recent Advances in Synthetic Routes to Azacycles. Molecules 2023; 28:molecules28062737. [PMID: 36985708 PMCID: PMC10054516 DOI: 10.3390/molecules28062737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
A heterocycle is an important structural scaffold of many organic compounds found in pharmaceuticals, materials, agrochemicals, and biological processes. Azacycles are one of the most common motifs of a heterocycle and have a variety of applications, including in pharmaceuticals. Therefore, azacycles have received significant attention from scientists and a variety of methods of synthesizing azacycles have been developed because their efficient synthesis plays a vital role in the production of many useful compounds. In this review, we summarize recent approaches to preparing azacycles via different methods as well as describe plausible reaction mechanisms.
Collapse
|
4
|
Kim H, Yang M, Kwon N, Cho M, Han J, Wang R, Qi S, Li H, Nguyen V, Li X, Cheng H, Yoon J. Recent progress on photodynamic therapy and photothermal therapy. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Heejeong Kim
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Mengyao Yang
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Moonyeon Cho
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Jingjing Han
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Rui Wang
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Sujie Qi
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Haidong Li
- School of Bioengineering Dalian University of Technology Dalian China
| | - Van‐Nghia Nguyen
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis for Energy and the Environment, Fujian Provincial Key Laboratory for Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou China
| | - Hong‐Bo Cheng
- State Key Laboratory of Organic−Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering Beijing University of Chemical Technology Beijing P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| |
Collapse
|
5
|
Sultana T, Jan U, Lee H, Lee H, Lee JI. Exceptional Repositioning of Dog Dewormer: Fenbendazole Fever. Curr Issues Mol Biol 2022; 44:4977-4986. [PMID: 36286053 PMCID: PMC9600184 DOI: 10.3390/cimb44100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
Fenbendazole (FZ) is a benzimidazole carbamate drug with broad-spectrum antiparasitic activity in humans and animals. The mechanism of action of FZ is associated with microtubular polymerization inhibition and glucose uptake blockade resulting in reduced glycogen stores and decreased ATP formation in the adult stages of susceptible parasites. A completely cured case of lung cancer became known globally and greatly influenced the cancer community in South Korea. Desperate Korean patients with cancer began self-administering FZ without their physician’s knowledge, which interfered with the outcome of the cancer treatment planned by their oncologists. On the basis of presented evidence, this review provides valuable information from PubMed, Naver, Google Scholar, and Social Network Services (SNS) on the effects of FZ in a broad range of preclinical studies on cancer. In addition, we suggest investigating the self-administration of products, including supplements, herbs, or bioactive compounds, by patients to circumvent waiting for long and costly FZ clinical trials.
Collapse
Affiliation(s)
- Tania Sultana
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Umair Jan
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Hyunsu Lee
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Hyejin Lee
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Jeong Ik Lee
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-2049-6234
| |
Collapse
|
6
|
Jung YH, Lee DC, Kim JO, Kim JH. Untargeted metabolomics-assisted comparative cytochrome P450-dependent metabolism of fenbendazole in human and dog liver microsomes. Xenobiotica 2022; 52:986-996. [PMID: 36533905 DOI: 10.1080/00498254.2022.2160676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fenbendazole (FBZ), a benzimidazole carbamate anthelmintic, has attracted attention for its antitumor activity. This study examined the metabolic characteristics of FBZ in humans compared with those in dogs. The phase I metabolites were identified in liver microsomal incubates using liquid chromatography-mass spectrometry (MS)-based untargeted metabolomics approaches. Seven metabolites of FBZ were identified by principal component analysis and orthogonal partial least square-discriminant analysis based on the global ion variables of the FBZ incubation groups. The chemical structure of the FBZ metabolites was suggested by examining the MS/MS spectrum and isotope distribution pattern. Cytochrome P450 (CYP) 1A1, CYP2D6, and CYP2J2 were the major isozymes responsible for the FBZ metabolism. No differences in the types of metabolites produced by the two species were noted. Multivariate analysis of human and dog incubation groups showed that five metabolites were relatively abundant in humans and the other two were not. In summary, the phase I metabolic profile of FBZ and the comparative metabolism between humans and dogs were examined using an untargeted metabolomics approach. This study suggests a successful investigation of FBZ metabolism in humans for conducting safety assessments regarding drug repositioning.
Collapse
Affiliation(s)
| | - Dong-Cheol Lee
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| |
Collapse
|