1
|
Alok A, Chauhan H, Rout B, Pandey A, Singh K. CRISPR/dCas9-KRAB mediated transcriptional suppression of NtbHLH47 enhances tolerance to iron stress and modulates iron content in tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112449. [PMID: 40015341 DOI: 10.1016/j.plantsci.2025.112449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/27/2024] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Iron homeostasis is a multifaceted regulatory process that needs to be studied to elucidate iron distribution, uptake, and storage in plants. NtbHLH47, a homologue to AtbHLH47, is a negative regulator of iron. The current study deploys CRISPR interference-dCas9-KRAB (Krüppel-associated box) in the transcriptional suppression of NtbHLH47 and its effect on iron uptake by plants. The pHSN6I01 harbouring dCas9-KRAB and gRNA targeting NtbHHLH47 was constructed. Four gRNAs were designed, G1, G2, G3, and G4, located at + 19, + 111, + 232, and + 335 bp upstream from the ATG start codon in the promoter region of NtbHLH47. The NtbHLH47 was repressed in the developed transgenic lines of tobacco and the qRT-PCR analysis showed that target sites G1 and G2 suppressed NtbHLH47 effectively. The transgenic pHSN6I01 +G1 plants were tolerant to the elevated levels of iron, copper, zinc, and magnesium. The root Ferric chelate reductase activity of pHSN6I01 +G1 lines was reduced against wild type. The Perl staining showed high iron content in the roots of the pHSN6I01 +G1 plants. ICP-MS analysis showed increased Fe content in the roots of pHSN6I01 +G1 line suggesting that NtbHLH47 modulates it. The expression of NtbHLH38, NtbHLH100, NtbHLH101, and NtFIT was found to be upregulated in the pHSN6I01 +G1 line. This is the first report of using CRISPRi based on dCas9-KRAB in tobacco and its application in the functional validation of a gene. Using this, NtbHLH47 was transcriptionally suppressed and the generated lines expressed increased levels of iron in the roots of N. tabacum and gave insight in the iron homeostasis.
Collapse
Affiliation(s)
- Anshu Alok
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh 160014, India; Department of Plant and Microbial Biology, Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Hanny Chauhan
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh 160014, India
| | - Biswaranjan Rout
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
2
|
Ochoa-Fernandez R, Abel NB, Wieland FG, Schlegel J, Koch LA, Miller JB, Engesser R, Giuriani G, Brandl SM, Timmer J, Weber W, Ott T, Simon R, Zurbriggen MD. Optogenetic control of gene expression in plants in the presence of ambient white light. Nat Methods 2020; 17:717-725. [PMID: 32601426 DOI: 10.1038/s41592-020-0868-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/24/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Optogenetics is the genetic approach for controlling cellular processes with light. It provides spatiotemporal, quantitative and reversible control over biological signaling and metabolic processes, overcoming limitations of chemically inducible systems. However, optogenetics lags in plant research because ambient light required for growth leads to undesired system activation. We solved this issue by developing plant usable light-switch elements (PULSE), an optogenetic tool for reversibly controlling gene expression in plants under ambient light. PULSE combines a blue-light-regulated repressor with a red-light-inducible switch. Gene expression is only activated under red light and remains inactive under white light or in darkness. Supported by a quantitative mathematical model, we characterized PULSE in protoplasts and achieved high induction rates, and we combined it with CRISPR-Cas9-based technologies to target synthetic signaling and developmental pathways. We applied PULSE to control immune responses in plant leaves and generated Arabidopsis transgenic plants. PULSE opens broad experimental avenues in plant research and biotechnology.
Collapse
Affiliation(s)
- Rocio Ochoa-Fernandez
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany.,iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany
| | - Nikolaj B Abel
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Jenia Schlegel
- iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany.,Institute of Developmental Genetics, University of Düsseldorf, Düsseldorf, Germany
| | - Leonie-Alexa Koch
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany
| | - J Benjamin Miller
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Raphael Engesser
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany
| | - Giovanni Giuriani
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany.,Univeersity of Glasgow, Glasgow, Scotland, UK
| | - Simon M Brandl
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jens Timmer
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Ott
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Rüdiger Simon
- iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany.,Institute of Developmental Genetics, University of Düsseldorf, Düsseldorf, Germany.,CEPLAS-Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany. .,iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany. .,CEPLAS-Cluster of Excellence on Plant Sciences, Düsseldorf, Germany.
| |
Collapse
|
3
|
Zhang N, Yu D, Zhu X. RNA Isolation from Plant Tissues: A Hands-on Laboratory Experimental Experience for Undergraduates. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 46:253-261. [PMID: 29285877 DOI: 10.1002/bmb.21106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
The practice of RNA isolation in undergraduate experimental courses is rare because of the existence of robust, ubiquitous and stable ribonucleases. We reported here modifications to our original protocol for RNA isolation from plant tissues, including the recovery of nucleic acids by ethanol precipitation at 0 °C for 10 min and the assessment of RNA quality by visualizing the banding profile of the separated RNAs on a standard nondenaturing agarose gel to shorten the duration of the whole procedure and simplify the operation. As a result, the modified procedure, including RNA isolation and quality control analysis could be finished in 4 hr and divided into two sessions. Because endogenous ribonucleases released upon disruption of the organelles and vacuoles were effectively and quickly inactivated, measures were taken to protect RNA integrity throughout the whole procedure so that total RNA with high purity and integrity as well as an appropriate yield could be obtained by students. The RNA isolation protocol described here was simple, efficient, flexible, and low cost. Therefore, it is an ideal approach for undergraduates to learn about RNA techniques. The pedagogical approach of the correlation of experimental work with the rationale for the whole protocol described in this report is an effective way for undergraduates to improve their learning of the techniques of RNA isolation and analysis and the theories behind them, as well as experimental design and data analysis. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(3):253-261, 2018.
Collapse
Affiliation(s)
- Nianhui Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China
| | - Dong Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China
| | - Xiaofeng Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China
| |
Collapse
|
4
|
Naranjo-Arcos MA, Maurer F, Meiser J, Pateyron S, Fink-Straube C, Bauer P. Dissection of iron signaling and iron accumulation by overexpression of subgroup Ib bHLH039 protein. Sci Rep 2017; 7:10911. [PMID: 28883478 PMCID: PMC5589837 DOI: 10.1038/s41598-017-11171-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/25/2017] [Indexed: 11/09/2022] Open
Abstract
Iron is an essential growth determinant for plants, and plants acquire this micronutrient in amounts they need in their environment. Plants can increase iron uptake in response to a regulatory transcription factor cascade. Arabidopsis thaliana serves as model plant to identify and characterize iron regulation genes. Here, we show that overexpression of subgroup Ib bHLH transcription factor bHLH039 (39Ox) caused constitutive iron acquisition responses, which resulted in enhanced iron contents in leaves and seeds. Transcriptome analysis demonstrated that 39Ox plants displayed simultaneously gene expression patterns characteristic of iron deficiency and iron stress signaling. Thereby, we could dissect iron deficiency response regulation. The transcription factor FIT, which is required to regulate iron uptake, was essential for the 39Ox phenotype. We provide evidence that subgroup Ib transcription factors are involved in FIT transcriptional regulation. Our findings pose interesting questions to the feedback control of iron homeostasis.
Collapse
Affiliation(s)
- Maria Augusta Naranjo-Arcos
- Institute of Botany, Heinrich-Heine University, D-40225, Düsseldorf, Germany.,Department of Biosciences-Plant Biology, Saarland University, D-66123, Saarbrücken, Germany
| | - Felix Maurer
- Department of Biosciences-Plant Biology, Saarland University, D-66123, Saarbrücken, Germany
| | - Johannes Meiser
- Department of Biosciences-Plant Biology, Saarland University, D-66123, Saarbrücken, Germany
| | - Stephanie Pateyron
- Transcriptomic Platform, Institute of Plant Sciences - Paris-Saclay, Plateau du Moulon, 91190, Gif-sur-Yvette, France
| | - Claudia Fink-Straube
- Leibniz Institute for New Materials gGmbH, Campus D2.2, 66123, Saarbrücken, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich-Heine University, D-40225, Düsseldorf, Germany. .,Department of Biosciences-Plant Biology, Saarland University, D-66123, Saarbrücken, Germany. .,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, D-40225, Düsseldorf, Germany.
| |
Collapse
|
5
|
McDonough J, Goudsouzian LK, Papaj A, Maceli AR, Klepac-Ceraj V, Peterson CN. Stressing Escherichia coli to educate students about research: A CURE to investigate multiple levels of gene regulation. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 45:449-458. [PMID: 28407453 DOI: 10.1002/bmb.21055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/31/2017] [Accepted: 02/21/2017] [Indexed: 05/14/2023]
Abstract
Course-based undergraduate research experiences (CUREs) have been shown to increase student retention and learning in the biological sciences. Most CURES cover only one aspect of gene regulation, such as transcriptional control. Here we present a new inquiry-based lab that engages understanding of gene expression from multiple perspectives. Students carry out a forward genetic screen to identify regulators of the stationary phase master regulator RpoS in the model organism Escherichia coli and then use a series of reporter fusions to determine if the regulation is at the level of transcription or the post-transcription level. This easy-to-implement course has been run both as a 9-week long project and a condensed 5-6 week version in three different schools and types of courses. A majority of the genes found in the screen are novel, thus giving students the opportunity to contribute to original findings to the field. Assessments of this CURE show student gains in learning in many knowledge areas. In addition, attitudinal surveys suggest the students are enthusiastic about the screen and their learning about gene regulation. In summary, this lab would be an appropriate addition to an intermediate or advanced level Molecular Biology, Genetics, or Microbiology curriculum. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):449-458, 2017.
Collapse
Affiliation(s)
- Janet McDonough
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts
| | - Lara K Goudsouzian
- Department of Natural Science, DeSales University, Center Valley, Pennsylvania
| | - Agllai Papaj
- Biology Department, Suffolk University, Boston, Massachusetts
| | - Ashley R Maceli
- Biology Department, Suffolk University, Boston, Massachusetts
| | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts
| | | |
Collapse
|