1
|
Wang Y, Li Q, Deng Y, Wu W, Zhang C, Zheng Y, Guan M, Jiang H. Liquid chromatography-tandem mass spectrometry assay for simultaneous quantification of catecholamines and metabolites in human plasma and cerebrospinal fluid. Pract Lab Med 2025; 45:e00471. [PMID: 40322294 PMCID: PMC12049989 DOI: 10.1016/j.plabm.2025.e00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/31/2025] [Accepted: 04/13/2025] [Indexed: 05/08/2025] Open
Abstract
Catecholamines (CAs) and their metabolites in human cerebrospinal fluid (CSF) and plasma are potential biomarkers of Alzheimer's disease (AD) and facilitate early diagnosis. Liquid chromatography-tandem mass spectrometry is the gold standard method for analyzing CAs. The objective of this study was to develop and validate a liquid chromatography-tandem mass spectrometry assay capable of simultaneously quantifying dopamine (DA), epinephrine (E), norepinephrine (NE), metanephrine (MN), normetanephrine (NMN), and 3-methoxytyramine (3-MT) in both human CSF and plasma. Samples were processed by solid-phase extraction with a weak cation exchange adsorbent and then separated using an ultra-performance reversed-phase chromatography column. Analyte detection was performed using a triple quadrupole mass spectrometer operated in positive-ion multiple reaction monitoring mode. The developed assay was validated according to standard guidelines. The linearity, specificity, precision, accuracy, carryover and stability were assessed to ensure compliance with specified criteria. The lower limits of quantification for DA, E, NE, MN, NMN, and 3-MT were 4.5, 2.5, 4.5, 2.5, 2, and 0.3 pg mL-1, respectively. The total runtime for a single sample was 6.5 min. These results demonstrated that the method was sensitive, rapid, and reliable for the simultaneous quantification of DA, E, NE, MN, NMN, and 3-MT in clinical practice. We successfully detected CAs and their metabolites in plasma and CSF samples from patients with normal cognition and AD. This study demonstrates an efficient laboratory workflow for high-throughput analysis of CAs and their metabolites and lays a foundation for further studies on AD biomarkers.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Quan Li
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuhang Deng
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenqing Wu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Cuiping Zhang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yichi Zheng
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Huashan CSF Laboratory, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Haoqin Jiang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Huashan CSF Laboratory, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
2
|
Hu C, Jia W, Liu Y, Wang Y, Zhang P, Chen H, Huang S. Single‐Molecule Sensing of Acidic Catecholamine Metabolites Using a Programmable Nanopore. Chemistry 2022; 28:e202201033. [DOI: 10.1002/chem.202201033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Chengzhen Hu
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| |
Collapse
|
3
|
Advances and challenges in neurochemical profiling of biological samples using mass spectrometry coupled with separation methods. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Lee W, Park NH, Ahn TB, Chung BC, Hong J. Profiling of a wide range of neurochemicals in human urine by very-high-performance liquid chromatography-tandem mass spectrometry combined with in situ selective derivatization. J Chromatogr A 2017; 1526:47-57. [PMID: 29031967 DOI: 10.1016/j.chroma.2017.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/28/2017] [Accepted: 10/06/2017] [Indexed: 01/19/2023]
Abstract
Development of a reliable analytical method of neurochemicals in biological fluids is important to discover potential biomarkers for the diagnosis, treatment and prognosis of neurological disorders. However, neurochemical profiling of biological samples is challenging because of highly different polarities between basic and acidic neurochemicals, low physiological levels, and high matrix interference in biological samples. In this study, an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method combined with in situ selective derivatization for comprehensive profiling of 20 neurochemicals in urine was developed for a wide range of neurochemicals. In situ selective derivatization greatly improved the peak capacity on a reversed-phase C18 column and sensitive mass detection in LC-ESI-MS/MS-positive ion mode due to reduction of the distinct physicochemical properties between acidic and basic neurochemicals. The MS/MS spectra of neurochemicals exhibited specific ions, such as losses of amine, methanol, or methyl formate molecules from protonated molecules, enabling selection of appropriate multiple reaction monitoring (MRM) ions for selective and sensitive detection. The developed method was validated in terms of linearity, limit of detection (LOD) and limit of quantification (LOQ), precision, accuracy, and recovery. The correlation coefficients (R2) of calibration curves were above 0.9961. The ranges of LODs and LOQs were 0.1-3.6ng/mL and 0.3-12.0ng/mL, respectively. The overall precision and accuracy were 0.52-16.74% and 82.26-118.17%, respectively. The method was successfully applied to simultaneously profile the metabolic pathways of tyrosine, tryptophan, and glutamate in Parkinson's disease patient urine (PD, n=21) and control urine (n=10). Significant differences (P≤0.01) between two groups in the activity of phenylethanolamine N-methyltransferase (PNMT) and alcohol dehydrogenase (ADH) were observed. In conclusion, this method provides reliable quantification of a wide range of neurochemicals in human urine and would be helpful for finding biomarkers related to specific neuronal diseases.
Collapse
Affiliation(s)
- Wonwoong Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea
| | - Na Hyun Park
- College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea
| | - Tae-Beom Ahn
- Department of Neurology, College of Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Bong Chul Chung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
5
|
Gautam SD, Chen JK, Murray V. The DNA sequence specificity of bleomycin cleavage in a systematically altered DNA sequence. J Biol Inorg Chem 2017; 22:881-892. [PMID: 28509989 DOI: 10.1007/s00775-017-1466-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/11/2017] [Indexed: 12/20/2022]
Abstract
Bleomycin is an anti-tumour agent that is clinically used to treat several types of cancers. Bleomycin cleaves DNA at specific DNA sequences and recent genome-wide DNA sequencing specificity data indicated that the sequence 5'-RTGT*AY (where T* is the site of bleomycin cleavage, R is G/A and Y is T/C) is preferentially cleaved by bleomycin in human cells. Based on this DNA sequence, we constructed a plasmid clone to explore this bleomycin cleavage preference. By systematic variation of single nucleotides in the 5'-RTGT*AY sequence, we were able to investigate the effect of nucleotide changes on bleomycin cleavage efficiency. We observed that the preferred consensus DNA sequence for bleomycin cleavage in the plasmid clone was 5'-YYGT*AW (where W is A/T). The most highly cleaved sequence was 5'-TCGT*AT and, in fact, the seven most highly cleaved sequences conformed to the consensus sequence 5'-YYGT*AW. A comparison with genome-wide results was also performed and while the core sequence was similar in both environments, the surrounding nucleotides were different.
Collapse
Affiliation(s)
- Shweta D Gautam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jon K Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
6
|
Chen JK, Murray V. The determination of the DNA sequence specificity of bleomycin-induced abasic sites. J Biol Inorg Chem 2016; 21:395-406. [PMID: 26940956 DOI: 10.1007/s00775-016-1349-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
The DNA sequence specificity of the cancer chemotherapeutic agent, bleomycin, was determined with high precision in purified plasmid DNA using an improved technique. This improved technique involved the labelling of the 5'- and 3'-ends of DNA with different fluorescent tags, followed by simultaneous cleavage by bleomycin and capillary electrophoresis with laser-induced fluorescence. This permitted the determination of bleomycin cleavage specificity with high accuracy since end-label bias was greatly reduced. Bleomycin produces single- and double-strand breaks, abasic sites and other base damage in DNA. This high-precision method was utilised to elucidate, for the first time, the DNA sequence specificity of bleomycin-induced DNA damage at abasic sites. This was accomplished using endonuclease IV that cleaves DNA at abasic sites after bleomycin damage. It was found that bleomycin-induced abasic sites formed at 5'-GC and 5'-GT sites while bleomycin-induced phosphodiester strand breaks formed mainly at 5'-GT dinucleotides. Since bleomycin-induced abasic sites are produced in the absence of molecular oxygen, this difference in DNA sequence specificity could be important in hypoxic tumour cells.
Collapse
Affiliation(s)
- Jon K Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
7
|
Chung LH, Murray V. The mitochondrial DNA sequence specificity of the anti-tumour drug bleomycin using end-labeled DNA and capillary electrophoresis and a comparison with genome-wide DNA sequencing. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1008:87-97. [DOI: 10.1016/j.jchromb.2015.11.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 11/30/2022]
|
8
|
Lv C, Li Q, Liu X, He B, Sui Z, Xu H, Yin Y, Liu R, Bi K. Determination of catecholamines and their metabolites in rat urine by ultra-performance liquid chromatography-tandem mass spectrometry for the study of identifying potential markers for Alzheimer's disease. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:354-363. [PMID: 25800017 DOI: 10.1002/jms.3536] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 06/04/2023]
Abstract
In order to investigate the potential links between catecholamines (CAs) and Alzheimer's disease (AD), rapid and sensitive ultra-performance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS) methods in different ionization modes for the quantification of 14 CAs and their metabolites in rat urine without derivatization or complex sample pre-treatments were developed. After addition of the internal standard, isoproterenol, the urine samples were extracted by protein precipitation and separated on an Inertsil ODS-EP column (Shimadzu, Japan) at a flow of 1.0 ml min(-1). Tandem mass spectrometric detection was performed on a 4000Q UPLC-MS/MS in the multiple reaction monitoring mode with turbo ion spray source. Tyrosine, dopamine, noradrenaline, epinephrine, 3-methoxytyramine, normetanephrine and metanephrine were determined in positive mode, while 3,4-dihyroxy-L-phenylalanine (DOPA), 3,4-dihydroxyphenylacetic acid, DL-3,4-dihydroxymandelic acid, DL-3,4-dihydroxyphenyl glycol, homovanillic acid, DL-4-hydroxy-3-methoxymandelic acid and 4-hydroxy-3-methoxy-phenylglycol were determined in negative mode. The methods were examined and were found to be precise and accurate within the linearity range of the assays. The intra-day and inter-day precision and accuracy of the analytes were well within acceptance criteria (±15%). The mean extraction recoveries of analytes and internal standard were all more than 60%. The validated methods have been successfully applied to compare CAs profiles in normal and AD rats. The results indicated the urine levels of DL-3,4-dihydroxyphenyl glycol and 4-hydroxy-3-methoxy-phenylglycol in AD rats were significantly higher than those in the normal group, and the other CAs have an opposite performance. These may attribute to the difference of some enzyme activity between rats with AD and normal. Furthermore, this may be helpful in clinical diagnostics and monitor the efficacy of AD treatment.
Collapse
Affiliation(s)
- Chunxiao Lv
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Casoni D, Sima IA, Sârbu C. Thin-layer chromatography-an image-processing method for the determination of acidic catecholamine metabolites. J Sep Sci 2014; 37:2675-81. [DOI: 10.1002/jssc.201400550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/12/2014] [Accepted: 07/12/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Dorina Casoni
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering; Babeş-Bolyai University; Cluj-Napoca România
| | - Ioana Anamaria Sima
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering; Babeş-Bolyai University; Cluj-Napoca România
| | - Costel Sârbu
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering; Babeş-Bolyai University; Cluj-Napoca România
| |
Collapse
|
10
|
Zhao J. Simultaneous determination of plasma creatinine, uric acid, kynurenine and tryptophan by high-performance liquid chromatography: method validation and in application to the assessment of renal function. Biomed Chromatogr 2014; 29:410-5. [DOI: 10.1002/bmc.3291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/23/2014] [Accepted: 06/16/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Jianxing Zhao
- Ruijin Hospital; Shanghai Jiao Tong University School of Medicine and Shanghai Institute of Hypertension; 197 Ruijin 2nd Road Shanghai 200025 China
| |
Collapse
|
11
|
Paik MJ, Kim DK, Nguyen DT, Lee G, Rhee CS, Yoon IY, Kim JW. Correlation of daytime sleepiness with urine metabolites in patients with obstructive sleep apnea. Sleep Breath 2014; 18:517-23. [DOI: 10.1007/s11325-013-0913-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/11/2013] [Accepted: 11/11/2013] [Indexed: 12/21/2022]
|
12
|
Park NH, Hong JY, Shin HJ, Hong J. Comprehensive profiling analysis of bioamines and their acidic metabolites in human urine by gas chromatography/mass spectrometry combined with selective derivatization. J Chromatogr A 2013; 1305:234-43. [DOI: 10.1016/j.chroma.2013.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 11/26/2022]
|