1
|
Calucică DM, Manda CV, Găman AM, Răileanu Ș, Stanca L, Popescu MDE, Mateescu OG, Biță A, Croitoru O, Neamțu SD. Development of a SPE-LC-MS Method for the Quantitation of Palbociclib and Abemaciclib in Human Plasma. Molecules 2022; 27:8604. [PMID: 36500697 PMCID: PMC9736392 DOI: 10.3390/molecules27238604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Palbociclib and abemaciclib are two cyclin-dependent kinases 4 and 6 used for breast cancer treatment. Levels of these medicines present a significant interindividual variability, so monitoring those concentrations might be necessary in therapy. Most of the methods presented so far in the literature use simple protein precipitation of plasma proteins as sample preparation method followed by direct injection of the supernatant into the LC instrument, preceded or not by a simple filtration step. Within that approach, the probability of injecting proteins in the chromatographic system is increased. With the purpose of obtaining a cleaner extract of the drugs, we developed and validated a simple and accurate LC-MS method for determining palbociclib and abemaciclib in human plasma. Solid phase extraction (SPE) using Oasis PRiME HLB® cartridges was used for plasma sample preparation. The method provided clean extracts with a recovery extraction higher than 85% for both compounds. Separation was achieved by high-performance liquid chromatography (HPLC), using a C18 (4.6 × 50 mm) column, with a gradient elution of ammonium acetate/acetic acid-acetonitrile as the mobile phase. Detection was performed by mass spectrometry (MS) in single ion recording (SIR) mode. Intra-day and inter-day precision data for both analytes were 3.8-7.2% and 3.6-7.4%, respectively. Calibration curves were both linear between 2 and 400 ng/mL with a correlation coefficient higher than 0.998. The LC-MS method can be used to quantify the drugs in human plasma in routine analysis. The method proved to be useful in determining real plasma levels in patients involved in cancer therapy. Drug concentrations were determined in a 10 min run-time, including re-equilibration of the column.
Collapse
Affiliation(s)
- Daniela Maria Calucică
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Costel-Valentin Manda
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Amelia Maria Găman
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Ștefan Răileanu
- Clinic Oncology Municipal Hospital “Filantropia”, Filantropiei Street No. 1, 200638 Craiova, Romania
| | - Liliana Stanca
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | | | | | - Andrei Biță
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Octavian Croitoru
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Simona-Daniela Neamțu
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| |
Collapse
|
2
|
Bouitbir J, Panajatovic MV, Krähenbühl S. Mitochondrial Toxicity Associated with Imatinib and Sorafenib in Isolated Rat Heart Fibers and the Cardiomyoblast H9c2 Cell Line. Int J Mol Sci 2022; 23:ijms23042282. [PMID: 35216404 PMCID: PMC8878993 DOI: 10.3390/ijms23042282] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are associated with cardiac toxicity, which may be caused by mitochondrial toxicity. The underlying mechanisms are currently unclear and require further investigation. In the present study, we aimed to investigate in more detail the role of the enzyme complexes of the electron transfer system (ETS), mitochondrial oxidative stress, and mechanisms of cell death in cardiac toxicity associated with imatinib and sorafenib. Cardiac myoblast H9c2 cells were exposed to imatinib and sorafenib (1 to 100 µM) for 24 h. Permeabilized rat cardiac fibers were treated with both drugs for 15 min. H9c2 cells exposed to sorafenib for 24 h showed a higher membrane toxicity and ATP depletion in the presence of galactose (favoring mitochondrial metabolism) compared to glucose (favoring glycolysis) but not when exposed to imatinib. Both TKIs resulted in a higher dissipation of the mitochondrial membrane potential in galactose compared to glucose media. Imatinib inhibited Complex I (CI)- and CIII- linked respiration under both conditions. Sorafenib impaired CI-, CII-, and CIII-linked respiration in H9c2 cells cultured with glucose, whereas it inhibited all ETS complexes with galactose. In permeabilized rat cardiac myofibers, acute exposure to imatinib and sorafenib decreased CI- and CIV-linked respiration in the presence of the drugs. Electron microscopy showed enlarged mitochondria with disorganized cristae. In addition, both TKIs caused mitochondrial superoxide accumulation and decreased the cellular GSH pool. Both TKIs induced caspase 3/7 activation, suggesting apoptosis as a mechanism of cell death. Imatinib and sorafenib impaired the function of cardiac mitochondria in isolated rat cardiac fibers and in H9c2 cells at plasma concentrations reached in humans. Both imatinib and sorafenib impaired the function of enzyme complexes of the ETS, which was associated with mitochondrial ROS accumulation and cell death by apoptosis.
Collapse
Affiliation(s)
- Jamal Bouitbir
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland; (M.V.P.); (S.K.)
- Correspondence: ; Tel.: +41-61-207-6290
| | - Miljenko V. Panajatovic
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland; (M.V.P.); (S.K.)
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland; (M.V.P.); (S.K.)
| |
Collapse
|
3
|
He S, Bian J, Shao Q, Zhang Y, Hao X, Luo X, Feng Y, Huang L. Therapeutic Drug Monitoring and Individualized Medicine of Dasatinib: Focus on Clinical Pharmacokinetics and Pharmacodynamics. Front Pharmacol 2021; 12:797881. [PMID: 34938198 PMCID: PMC8685414 DOI: 10.3389/fphar.2021.797881] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Dasatinib is an oral second-generation tyrosine kinase inhibitor known to be used widely in Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) and Ph+ acute lymphoblastic leukemia (ALL). Notably, although a high pharmacokinetic variability in patients and an increased risk of pleural effusion are attendant, fixed dosing remains standard practice. Retrospective studies have suggested that dasatinib exposure may be associated with treatment response (efficacy/safety). Therapeutic drug monitoring (TDM) is gradually becoming a practical tool to achieve the goal of individualized medicine for patients receiving targeted drugs. With the help of TDM, these patients who maintain response while have minimum adverse events may achieve long-term survival. This review summaries current knowledge of the clinical pharmacokinetics variation, exposure-response relationships and analytical method for individualized dosing of dasatinib, in particular with respect to therapeutic drug monitoring. In addition, it highlights the emerging insights into several controversial issues in TDM of dasatinib, with the aim of presenting up-to-date evidence for clinical decision-making and insights for future studies.
Collapse
Affiliation(s)
- Shiyu He
- Department of Pharmacy, People’s Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jialu Bian
- Department of Pharmacy, People’s Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qianhang Shao
- Department of Pharmacy, People’s Hospital of Peking University, Beijing, China
| | - Ying Zhang
- Department of Pharmacy, People’s Hospital of Peking University, Beijing, China
| | - Xu Hao
- Department of Pharmacy, People’s Hospital of Peking University, Beijing, China
| | - Xingxian Luo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yufei Feng
- Department of Pharmacy, People’s Hospital of Peking University, Beijing, China
| | - Lin Huang
- Department of Pharmacy, People’s Hospital of Peking University, Beijing, China
| |
Collapse
|
4
|
Tuzimski T, Petruczynik A. Review of Chromatographic Methods Coupled with Modern Detection Techniques Applied in the Therapeutic Drugs Monitoring (TDM). Molecules 2020; 25:E4026. [PMID: 32899296 PMCID: PMC7504794 DOI: 10.3390/molecules25174026] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/29/2020] [Accepted: 08/30/2020] [Indexed: 12/15/2022] Open
Abstract
Therapeutic drug monitoring (TDM) is a tool used to integrate pharmacokinetic and pharmacodynamics knowledge to optimize and personalize various drug therapies. The optimization of drug dosing may improve treatment outcomes, reduce toxicity, and reduce the risk of developing drug resistance. To adequately implement TDM, accurate and precise analytical procedures are required. In clinical practice, blood is the most commonly used matrix for TDM; however, less invasive samples, such as dried blood spots or non-invasive saliva samples, are increasingly being used. The choice of sample preparation method, type of column packing, mobile phase composition, and detection method is important to ensure accurate drug measurement and to avoid interference from matrix effects and drug metabolites. Most of the reported procedures used liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) techniques due to its high selectivity and sensitivity. High-performance chromatography with ultraviolet detection (HPLC-UV) methods are also used when a simpler and more cost-effective methodology is desired for clinical monitoring. The application of high-performance chromatography with fluorescence detection (HPLC-FLD) with and without derivatization processes and high-performance chromatography with electrochemical detection (HPLC-ED) techniques for the analysis of various drugs in biological samples for TDM have been described less often. Before chromatographic analysis, samples were pretreated by various procedures-most often by protein precipitation, liquid-liquid extraction, and solid-phase extraction, rarely by microextraction by packed sorbent, dispersive liquid-liquid microextraction. The aim of this article is to review the recent literature (2010-2020) regarding the use of liquid chromatography with various detection techniques for TDM.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Anna Petruczynik
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Effective quantification of 11 tyrosine kinase inhibitors and caffeine in human plasma by validated LC-MS/MS method with potent phospholipids clean-up procedure. Application to therapeutic drug monitoring. Talanta 2020; 208:120450. [DOI: 10.1016/j.talanta.2019.120450] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022]
|
6
|
Dasgupta SK, Le A, Vijayan KV, Thiagarajan P. Dasatinib inhibits actin fiber reorganization and promotes endothelial cell permeability through RhoA-ROCK pathway. Cancer Med 2017; 6:809-818. [PMID: 28316141 PMCID: PMC5387130 DOI: 10.1002/cam4.1019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/13/2016] [Accepted: 12/29/2016] [Indexed: 11/24/2022] Open
Abstract
Treatment with dasatinib, a tyrosine kinase inhibitor, is associated with edema, pleural effusion, and pulmonary edema. We investigated the effect of dasatinib on the barrier function of human microvascular endothelial cells‐1 (HMEC‐1) in vitro and in vivo. The permeability of HMEC‐1 to fluorescein isothiocyante (FITC)‐dextran increased in Transwell chambers within 5 min following the addition of therapeutic concentrations of dasatinib. The change in permeability was associated with increased activation of RhoA GTPase and its effector Rho‐associated coiled‐coil kinase 1(ROCK1). RhoA inhibitor C3 transferase almost completely inhibited dasatinib‐induced increase in permeability. Under similar conditions, imatinib had no effect on permeability or activation of RhoA. Since integrin‐induced cell spreading suppresses RhoA activation, we examined the effect of dasatinib on cell spreading on fibronectin substrate. Dasatinib impaired endothelial cell spreading in a concentration‐dependent manner and induced disorganization of actin fibers. Tyrosine kinases play an essential role in transmitting signals from integrins to RhoA and we examined tyrosine phosphorylation of several cytoskeletal proteins. Dasatinib markedly inhibited tyrosine phosphorylation of p130 Crk‐associated substrate (p130cas), paxillin and vinculin. These results suggest that the inhibition of tyrosine phosphorylation of the focal adhesion plaque components by dasatinib may alter the assembly of actin fibers resulting in the activation of RhoA/ROCK pathway. Consistent with these findings, dasatinib‐induced increase in the permeability was blocked by ROCK inhibitor y27632. In vivo administration of y27632, significantly inhibited the dasatinib‐induced extravasation of Evans blue in mice and dasatinib‐induced increase in microvascular permeability was attenuated in ROCK1‐deficient mice. These findings suggest that ROCK inhibitors could serve as therapeutic modalities to ameliorate the dasatinib‐induced pulmonary changes.
Collapse
Affiliation(s)
- Swapan K Dasgupta
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - Anhquyen Le
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - K Vinod Vijayan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Perumal Thiagarajan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Pathology, Baylor College of Medicine, Houston, Texas.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
7
|
Abdelhameed AS, Attwa MW, Kadi AA. An LC-MS/MS method for rapid and sensitive high-throughput simultaneous determination of various protein kinase inhibitors in human plasma. Biomed Chromatogr 2016; 31. [DOI: 10.1002/bmc.3793] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry; College of Pharmacy, King Saud University; Riyadh Riyadh 11451 Kingdom of Saudi Arabia
| | - Mohamed W. Attwa
- Department of Pharmaceutical Chemistry; College of Pharmacy, King Saud University; Riyadh Riyadh 11451 Kingdom of Saudi Arabia
| | - Adnan A. Kadi
- Department of Pharmaceutical Chemistry; College of Pharmacy, King Saud University; Riyadh Riyadh 11451 Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Eckstein N, Röper L, Haas B, Potthast H, Hermes U, Unkrig C, Naumann-Winter F, Enzmann H. Clinical pharmacology of tyrosine kinase inhibitors becoming generic drugs: the regulatory perspective. J Exp Clin Cancer Res 2014; 33:15. [PMID: 24502453 PMCID: PMC3922331 DOI: 10.1186/1756-9966-33-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022] Open
Abstract
Over the last decades, billions have been spent and huge efforts have been taken in basic and clinical cancer research [CA Cancer J Clin63:11-30]. About a decade ago, the arms race between drugs and cancer cells reached a new level by introduction of tyrosine kinase inhibitors (TKI) into pharmacological anti-cancer therapy. According to their molecular mechanism of action, TKI in contrast to so-called "classic" or "conventional" cytostatics belong to the group of targeted cancer medicines, characterized by accurately fitting with biological structures (i.e. active centers of kinases). Numerous (partly orphan) indications are covered by this new class of substances. Approximately ten years after the first substances of this class of medicines were authorized, patent protection will end within the next years. The following article covers clinical meaning and regulatory status of anti-cancer TKI and gives an outlook to what is expected from the introduction of generic anti-cancer TKI.
Collapse
Affiliation(s)
- Niels Eckstein
- Federal Institute of Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
| | - Lea Röper
- Federal Institute of Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
| | - Bodo Haas
- Federal Institute of Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
| | - Henrike Potthast
- Federal Institute of Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
| | - Ulrike Hermes
- Federal Institute of Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
| | - Christoph Unkrig
- Federal Institute of Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
| | - Frauke Naumann-Winter
- Federal Institute of Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
| | - Harald Enzmann
- Federal Institute of Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, Bonn 53175, Germany
| |
Collapse
|
9
|
Tyrosine kinase inhibitors impair B-cell immune responses in CML through off-target inhibition of kinases important for cell signaling. Blood 2013; 122:227-38. [PMID: 23719297 DOI: 10.1182/blood-2012-11-465039] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have significant off-target multikinase inhibitory effects. We aimed to study the impact of TKIs on the in vivo B-cell response to vaccination. Cellular and humoral responses to influenza and pneumococcal vaccines were evaluated in 51 chronic phase chronic myeloid leukemia (CML) patients on imatinib, or second-line dasatinib and nilotinib, and 24 controls. Following vaccination, CML patients on TKI had significant impairment of IgM humoral response to pneumococcus compared with controls (IgM titer 79.0 vs 200 U/mL, P = .0006), associated with significantly lower frequencies of peripheral blood IgM memory B cells. To elucidate whether CML itself or treatment with TKI was responsible for the impaired humoral response, we assessed memory B-cell subsets in paired samples collected before and after imatinib therapy. Treatment with imatinib was associated with significant reductions in IgM memory B cells. In vitro coincubation of B cells with plasma from CML patients on TKI or with imatinib, dasatinib, or nilotinib induced significant and dose-dependent inhibition of Bruton's tyrosine kinase and indirectly its downstream substrate, phospholipase-C-γ2, both important in B-cell signaling and survival. These data indicate that TKIs, through off-target inhibition of kinases important in B-cell signaling, reduce memory B-cell frequencies and induce significant impairment of B-cell responses in CML.
Collapse
|