1
|
Wang X, Lu L, Peng H, Li T, Long Q, Guan L, Xia X, Li X, Wang M. A rapid and validated GC-MS/MS method for simultaneous quantification of serum Myo- and D-chiro-inositol isomers. J Chromatogr A 2024; 1732:465246. [PMID: 39128239 DOI: 10.1016/j.chroma.2024.465246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Myo-inositol (MI) and D-chiro-inositol (DCI) are two paramount isomers of inositol, both vital in glucose and steroid metabolism. Deficits in MI, DCI or MI/DCI ratio are expressly concerned with several pathological process, whereas MI and DCI lack practical measurement for human specimen. METHODS To quantify MI and DCI in serum samples simultaneously, a gas chromatography tandem mass spectrometry (GC-MS/MS) method was established. The process flow was optimized in ion source, derivative agent volume and reaction time. The performance characteristics were verified by commercial standards and clinical serums. RESULTS This method was confirmed to be sensitive (LOD ≤ 30 ng/mL of MI, ≤3 ng/mL of DCI) and reproducible (RSD < 6 % for repeated analyses). Quantitative determinations performed good linearity within the measurement range of 0.500-10.00 and 0.005-0.500 μg/mL for MI and DCI respectively (R2 > 0.999). The recoveries of MI and DCI were 97.11-99.35 % and 107.82-113.09 %, respectively. This method was successfully applied to 114 clinical specimens. No significant matrix effect was observed in serum samples under current conditions.
Collapse
Affiliation(s)
- Xiaofan Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, 318000, China
| | - Lan Lu
- Physical and chemical laboratory of Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan 410005, China
| | - Huanqie Peng
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Tanyao Li
- Physical and chemical laboratory of Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan 410005, China
| | - Qichen Long
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lihua Guan
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xianping Li
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Min Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
2
|
Omosule CL, Blair CJ, Herries E, Zaydman MA, Farnsworth C, Ladenson J, Dietzen DJ, Gaut JP. Clinical Utility of LC-MS/MS for Blood Myo-Inositol in Patients with Acute Kidney Injury and Chronic Kidney Disease. Clin Chem 2024; 70:1172-1181. [PMID: 39092926 DOI: 10.1093/clinchem/hvae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/12/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Diagnosing acute kidney injury (AKI) and chronic kidney disease (CKD) relies on creatinine, which lacks optimal diagnostic sensitivity. The kidney-specific proximal tubular enzyme myo-inositol oxygenase (MIOX) catalyzes the conversion of myo-inositol (MI) to D-glucuronic acid. We hypothesized that proximal tubular damage, which occurs in AKI and CKD, will decrease MIOX activity, causing MI accumulation. To explore this, we developed an LC-MS/MS assay to quantify plasma MI and assessed its potential in identifying AKI and CKD patients. METHODS MI was quantified in plasma from 3 patient cohorts [normal kidney function (n = 105), CKD (n = 94), and AKI (n = 54)]. The correlations between MI and creatinine were determined using Deming regression and Pearson correlation and the impact of age, sex, and ethnicity on MI concentrations was assessed. Receiver operating characteristic curve analysis was employed to evaluate MI diagnostic performance. RESULTS In volunteers with normal kidney function, the central 95th percentile range of plasma MI concentrations was 16.6 to 44.2 µM. Age, ethnicity, and sex showed minimal influence on MI. Patients with AKI and CKD exhibited higher median MI concentrations [71.1 (25th percentile: 38.2, 75th percentile: 115.4) and 102.4 (77, 139.5) µM], respectively. MI exhibited excellent sensitivity (98.9%) and specificity (100%) for diagnosing CKD. In patients with AKI, MI increased 32.9 (SD 16.8) h before creatinine. CONCLUSIONS This study unveils MI as a potential renal biomarker, notably elevated in plasma during AKI and CKD. Plasma MI rises 33 h prior to serum creatinine, enabling early AKI detection. Further validation and exploration of MI quantitation in kidney disease diagnosis is warranted.
Collapse
Affiliation(s)
- Catherine L Omosule
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Connor J Blair
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Elizabeth Herries
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Mark A Zaydman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher Farnsworth
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jack Ladenson
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Dennis J Dietzen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Joseph P Gaut
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine (Nephrology), Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
3
|
Liu Y, Zhang S, Wang Y, Wang L, Cao Z, Sun W, Fan P, Zhang P, Chen HY, Huang S. Nanopore Identification of Alditol Epimers and Their Application in Rapid Analysis of Alditol-Containing Drinks and Healthcare Products. J Am Chem Soc 2022; 144:13717-13728. [PMID: 35867993 DOI: 10.1021/jacs.2c04595] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alditols, which have a sweet taste but produce much lower calories than natural sugars, are widely used as artificial sweeteners. Alditols are the reduced forms of monosaccharide aldoses, and different alditols are diastereomers or epimers of each other and direct and rapid identification by conventional methods is difficult. Nanopores, which are emerging single-molecule sensors with exceptional resolution when engineered appropriately, are useful for the recognition of diastereomers and epimers. In this work, direct distinguishing of alditols corresponding to all 15 monosaccharide aldoses was achieved by a boronic acid-appended hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore (MspA-PBA). Thirteen alditols including glycerol, erythritol, threitol, adonitol, arabitol, xylitol, mannitol, sorbitol, allitol, dulcitol, iditol, talitol, and gulitol (l-sorbitol) could be fully distinguished, and their sensing features constitute a complete nanopore alditol database. To automate event classification, a custom machine-learning algorithm was developed and delivered a 99.9% validation accuracy. This strategy was also used to identify alditol components in commercially available "zero-sugar" drinks and healthcare products, suggesting their use in rapid and sensitive quality control for the food and medical industry.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zhenyuan Cao
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Wen Sun
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Rani R, Singh G, Batra K, Minakshi P. Bioengineered Polymer/Composites as Advanced Biological Detection of Sorbitol: An Application in Healthcare Sector. Curr Top Med Chem 2021; 20:963-981. [PMID: 32141419 DOI: 10.2174/1568026620666200306131416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/20/2020] [Accepted: 01/31/2020] [Indexed: 12/23/2022]
Abstract
Bioengineered polymers and nanomaterials have emerged as promising and advanced materials for the fabrication and development of novel biosensors. Nanotechnology-enabled biosensor methods have high sensitivity, selectivity and more rapid detection of an analyte. Biosensor based methods are more rapid and simple with higher sensitivity and selectivity and can be developed for point-of-care diagnostic testing. Development of a simple, sensitive and rapid method for sorbitol detection is of considerable significance to efficient monitoring of diabetes-associated disorders like cataract, neuropathy, and nephropathy at initial stages. This issue encourages us to write a review that highlights recent advancements in the field of sorbitol detection as no such reports have been published till the date. The first section of this review will be dedicated to the conventional approaches or methods that had been playing a role in detection. The second part focused on the emerging field i.e. biosensors with optical, electrochemical, piezoelectric, etc. approaches for sorbitol detection and the importance of its detection in healthcare application. It is expected that this review will be very helpful for readers to know the different conventional and recent detection techniques for sorbitol at a glance.
Collapse
Affiliation(s)
- Ruma Rani
- ICAR-National Research Centre on Equines, Hisar-125001, India
| | - Geeta Singh
- Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131027, Sonipat, India
| | - Kanisht Batra
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, India
| | - Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, India
| |
Collapse
|
5
|
Rajaram R, Kiruba M, Suresh C, Mathiyarasu J, Kumaran S, Kumaresan R. Amperometric determination of Myo-inositol using a glassy carbon electrode modified with nanostructured copper sulfide. Mikrochim Acta 2020; 187:334. [PMID: 32417978 DOI: 10.1007/s00604-020-04300-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/23/2020] [Indexed: 12/30/2022]
Abstract
A method for the amperometric determination of Myo-inositol is presented. Nanostructured copper sulfide material was synthesized by solvothermal method and utilized as sensor matrix. The physico-chemical analysis using XRD, Raman, FE-SEM, TEM, and XPS confirmed the formation of CuS material. The voltammetric response of CuS-modified glassy carbon electrode for a successive Myo-inositol (0.5 μM) addition confirmed that the reaction takes place at the surface of the electrode. The modified electrode resulted in signal enhancement for a linear response ranging from 0.5-8.5 μM at an applied overpotential of 0.65 V with a correlation coefficient value (R2) of 0.99. The sensitivity and limit of detection of the modified electrode were 7.87 μA μM-1 cm-2 and 0.24 μM, respectively. The interfering effect of various compounds present in real samples was examined. Graphical abstract Schematic representation of synthetic protocol of nanostructured CuS and Myo-inositol oxidation on CuS-modified glassy carbon electrode in basic medium.
Collapse
Affiliation(s)
- Rajendran Rajaram
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Central Electrochemical Research Institute (CECRI) Campus, Chennai, 600113, India.,Electrodics and Electrocatalysis Division, CSIR- Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, 630 003, India
| | - Muniyandi Kiruba
- PG & Research Department of Chemistry, Alagappa Government Arts College, Karaikudi, Tamil Nadu, 630003, India
| | - Chinnathambi Suresh
- Electrodics and Electrocatalysis Division, CSIR- Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, 630 003, India.
| | - Jayaraman Mathiyarasu
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Central Electrochemical Research Institute (CECRI) Campus, Chennai, 600113, India. .,Electrodics and Electrocatalysis Division, CSIR- Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, 630 003, India.
| | - Shanmugam Kumaran
- Department of Bio-Technology, Periyar Maniammai Institute of Science & Technology, Periyar Nagar, Vallam, Thanjavur, Tamil Nadu, 613 403, India
| | - Ramanathan Kumaresan
- Department of Medical Biochemistry, Biomedical Division, School of Medicine, College of Health Sciences, Mekelle University (Ayder Campus), P.O. Box 1871, Mekelle, Ethiopia
| |
Collapse
|
6
|
Tabrizi R, Ostadmohammadi V, Lankarani KB, Peymani P, Akbari M, Kolahdooz F, Asemi Z. The effects of inositol supplementation on lipid profiles among patients with metabolic diseases: a systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis 2018; 17:123. [PMID: 29793496 PMCID: PMC5968598 DOI: 10.1186/s12944-018-0779-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Several studies have evaluated the effect of inositol supplementation on lipid profiles among population with metabolic diseases; however, the findings are controversial. This review of randomized controlled trials (RCTs) was performed to summarize the evidence of the effects of inositol supplementation on lipid profiles among population with metabolic diseases. METHODS Relevant RCTs studies were searched in Cochrane Library, EMBASE, MEDLINE, and Web of Science until October 2017. Two researchers assessed study eligibility, extracted data, and evaluated risk of bias of included primary studies, independently. To check for the heterogeneity among included studies Q-test and I2 statistics were used. Data were pooled by using the random-effect model and standardized mean difference (SMD) was considered as summary of the effect size. RESULTS Overall, 14 RCTs were included into meta-analysis. Pooled results showed that inositol supplementation among patients with metabolic diseases significantly decreased triglycerides (SMD - 1.24; 95% CI, - 1.84, - 0.64; P < 0.001), total- (SMD - 1.09; 95% CI, - 1.83, - 0.55; P < 0.001), and LDL-cholesterol levels (SMD - 1.31; 95% CI, - 2.23, - 0.39; P = 0.005). There was no effect of inositol supplementation on HDL-cholesterol levels (SMD 0.20; 95% CI, - 0.27, 0.67; P = 0.40). CONCLUSIONS Inositol supplementation may result in reduction in triglycerides, total- and LDL-cholesterol levels, but did not affect HDL-cholesterol levels among patients with metabolic diseases. Additional prospective studies regarding the effect of inositol supplementation on lipid profiles in patients with metabolic diseases are necessary.
Collapse
Affiliation(s)
- Reza Tabrizi
- Health Policy Research Center, Institute of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahidreza Ostadmohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Kamran B. Lankarani
- Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Payam Peymani
- Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Akbari
- Health Policy Research Center, Institute of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fariba Kolahdooz
- Indigenous and Global Health Research, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
7
|
Raks V, Al-Suod H, Buszewski B. Isolation, Separation, and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques. Chromatographia 2017; 81:189-202. [PMID: 29449742 PMCID: PMC5807477 DOI: 10.1007/s10337-017-3405-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/28/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022]
Abstract
Development of efficient methods for isolation and separation of biologically active compounds remains an important challenge for researchers. Designing systems such as organomineral composite materials that allow extraction of a wide range of biologically active compounds, acting as broad-utility solid-phase extraction agents, remains an important and necessary task. Selective sorbents can be easily used for highly selective and reliable extraction of specific components present in complex matrices. Herein, state-of-the-art approaches for selective isolation, preconcentration, and separation of biologically active compounds from a range of matrices are discussed. Primary focus is given to novel extraction methods for some biologically active compounds including cyclic polyols, flavonoids, and oligosaccharides from plants. In addition, application of silica-, carbon-, and polymer-based solid-phase extraction adsorbents and membrane extraction for selective separation of these compounds is discussed. Potential separation process interactions are recommended; their understanding is of utmost importance for the creation of optimal conditions to extract biologically active compounds including those with estrogenic properties.
Collapse
Affiliation(s)
- Victoria Raks
- 1Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100 Toruń, Poland.,3Department of Analytical Chemistry, Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv, 01601 Ukraine
| | - Hossam Al-Suod
- 1Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100 Toruń, Poland.,2Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Toruń, Poland
| | - Bogusław Buszewski
- 1Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100 Toruń, Poland.,2Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Toruń, Poland
| |
Collapse
|
8
|
Phelps DL, Ward RM, Williams RL, Nolen TL, Watterberg KL, Oh W, Goedecke M, Ehrenkranz RA, Fennell T, Poindexter BB, Cotten CM, Hallman M, Frantz ID, Faix RG, Zaterka-Baxter KM, Das A, Ball MB, Lacy CB, Walsh MC, Carlo WA, Sánchez PJ, Bell EF, Shankaran S, Carlton DP, Chess PR, Higgins RD. Safety and pharmacokinetics of multiple dose myo-inositol in preterm infants. Pediatr Res 2016; 80:209-17. [PMID: 27074126 PMCID: PMC5198845 DOI: 10.1038/pr.2016.97] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 03/03/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND Preterm infants with respiratory distress syndrome (RDS) given inositol had reduced bronchopulmonary dysplasia (BPD), death and severe retinopathy of prematurity (ROP). We assessed the safety and pharmacokinetics of daily inositol to select a dose providing serum levels previously associated with benefit, and to learn if accumulation occurred when administered throughout the normal period of retinal vascularization. METHODS Infants ≤ 29 wk GA (n = 122, 14 centers) were randomized and treated with placebo or inositol at 10, 40, or 80 mg/kg/d. Intravenous administration converted to enteral when feedings were established, and continued to the first of 10 wk, 34 wk postmenstrual age (PMA) or discharge. Serum collection employed a sparse sampling population pharmacokinetics design. Inositol urine losses and feeding intakes were measured. Safety was prospectively monitored. RESULTS At 80 mg/kg/d mean serum levels reached 140 mg/l, similar to Hallman's findings. Levels declined after 2 wk, converging in all groups by 6 wk. Analyses showed a mean volume of distribution 0.657 l/kg, clearance 0.058 l/kg/h, and half-life 7.90 h. Adverse events and comorbidities were fewer in the inositol groups, but not significantly so. CONCLUSION Multiple dose inositol at 80 mg/kg/d was not associated with increased adverse events, achieves previously effective serum levels, and is appropriate for investigation in a phase III trial.
Collapse
Affiliation(s)
- Dale L. Phelps
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Robert M. Ward
- Department of Pediatrics, and Pediatric Pharmacology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Rick L. Williams
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC, USA
| | - Tracy L. Nolen
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC, USA
| | - Kristi L. Watterberg
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - William Oh
- Department of Pediatrics, Women & Infants’ Hospital Brown University, Providence, RI, USA
| | - Michael Goedecke
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC, USA
| | | | - Timothy Fennell
- Pharmacology and Toxicology Division, RTI International, Research Triangle Park, NC, USA
| | - Brenda B. Poindexter
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Mikko Hallman
- PEDEGO Research Center, and MRC Oulu, and Oulu University Hospital, Oulu, Finland
| | - Ivan D. Frantz
- Department of Pediatrics, Floating Hospital for Children, Tufts Medical Center, Boston, MA, USA
| | - Roger G. Faix
- Department of Pediatrics, and Pediatric Pharmacology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kristin M. Zaterka-Baxter
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC, USA
| | - Abhik Das
- Social, Statistical and Environmental Sciences Unit, RTI International, Rockville, MD, USA
| | - M. Bethany Ball
- Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children’s Hospital, Palo Alto, CA, USA
| | - Conra Backstrom Lacy
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Michele C. Walsh
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Waldemar A. Carlo
- Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pablo J. Sánchez
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward F. Bell
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Seetha Shankaran
- Department of Pediatrics, Wayne State University, Detroit, MI, USA
| | - David P. Carlton
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Patricia R. Chess
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Rosemary D. Higgins
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|