1
|
Liu L, Li Z, Wu W. Harnessing natural inhibitors of protein synthesis for cancer therapy: A comprehensive review. Pharmacol Res 2024; 209:107449. [PMID: 39368568 DOI: 10.1016/j.phrs.2024.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Cancer treatment remains a formidable challenge in modern medicine, necessitating a nuanced understanding of its molecular underpinnings and the identification of novel therapeutic modalities. Among the intricate web of cellular pathways implicated in oncogenesis, protein synthesis has emerged as a fundamental process warranting meticulous investigation. This review elucidates the multifaceted role of protein synthesis pathways in tumor initiation and progression, highlighting the potential of targeting key nodes within these pathways as viable therapeutic strategies. Natural products have long served as a source of bioactive compounds with therapeutic potential owing to their structural diversity and evolutionary honing. Within this framework, we provide a thorough examination of natural inhibitors of protein synthesis as promising candidates for cancer therapy, drawing upon recent advancements and mechanistic insights. By synthesizing current evidence and elucidating key challenges and opportunities, this review aims to galvanize further research into the development of natural product-based anticancer therapeutics, thereby advancing the clinical armamentarium against malignancies.
Collapse
Affiliation(s)
- Liqin Liu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Dong WR, Gao X, Li CX, Song Y, Chai JH, Liang J. Detection and Characterization of the Metabolites of Ciwujianoside B in Rats Based on UPLC-Fusion Lumos Orbitrap Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2024; 2024:3187511. [PMID: 38813478 PMCID: PMC11136543 DOI: 10.1155/2024/3187511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
We previously conducted a systematic study on the metabolic process and products of hederasaponin B in rats. We hypothesized that the sugar chain structures play a key role in the metabolism of triterpenoid saponins. To verify this hypothesis, we conducted metabolic research on ciwujianoside B ascribed to the same sugar chains and a distinct aglycone and compared it with hederasaponin B. Specifically, we collected feces, urine, and plasma of rats after gavage with ciwujianoside B and identified 42 metabolites by UPLC-Fusion Lumos Orbitrap mass spectrometry. Finally, ciwujianoside B metabolism and hederasaponin B metabolism were compared, reaching the following conclusions: (i) more than 40 metabolites were identified in both, with the majority of metabolites identified in feces; (ii) the corresponding metabolic pathways in vivo were basically similar, including deglycosylation, acetylation, hydroxylation, glucuronidation, oxidation, and glycosylation; and (iii) deglycosylation was considered the main metabolic reaction, and its metabolites accounted for approximately 50% of all metabolites. Overall, this study provides a foundation for further research on the metabolism of triterpenoid saponins.
Collapse
Affiliation(s)
- Wan-Ru Dong
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Xue Gao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Chen-Xue Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Yan Song
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Jun-Hong Chai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| |
Collapse
|
3
|
Wang J, Xu J, Yang S, He L, Xu W, Liu Y, Cao B, Yu S. SN-38, an active metabolite of irinotecan, inhibits transcription of nuclear factor erythroid 2-related factor 2 and enhances drug sensitivity of colorectal cancer cells. Mol Carcinog 2024; 63:742-756. [PMID: 38270247 DOI: 10.1002/mc.23685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) significantly contributes to drug resistance of cancer cells, and Nrf2 inhibitors have been vigorously pursued. Repurposing of existing drugs, especially anticancer drugs, is a straightforward and promising strategy to find clinically available Nrf2 inhibitors and effective drug combinations. Topoisomerase inhibitors SN-38 (an active metabolite of irinotecan), topotecan, mitoxantrone, and epirubicin were found to significantly suppress Nrf2 transcriptional activity in cancer cells. SN-38, the most potent one among them, significantly inhibited the transcription of Nrf2, as indicated by decreased mRNA level and binding of RNA polymerase II to NFE2L2 gene, while no impact on Nrf2 protein or mRNA degradation was observed. SN-38 synergized with Nrf2-sensitive anticancer drugs such as mitomycin C in killing colorectal cancer cells, and irinotecan and mitomycin C synergistically inhibited the growth of SW480 xenografts in nude mice. Our study identified SN-38 and three other topoisomerase inhibitors as Nrf2 inhibitors, revealed the Nrf2-inhibitory mechanism of SN-38, and indicate that clinically feasible drug combinations could be designed based on their interactions with Nrf2 signaling.
Collapse
Affiliation(s)
- Jingya Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, P.R. China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University Health Science Center, Beijing, P.R. China
| | - Jiangli Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, P.R. China
| | - Shuhui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, P.R. China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University Health Science Center, Beijing, P.R. China
| | - Liu He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, P.R. China
| | - Wenhuai Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, P.R. China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University Health Science Center, Beijing, P.R. China
| | - Yan'e Liu
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, P.R. China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University Health Science Center, Beijing, P.R. China
| |
Collapse
|
4
|
Guo SB, Huang WJ, Tian XP. Brusatol modulates diverse cancer hallmarks and signaling pathways as a potential cancer therapeutic. ACTA MATERIA MEDICA 2022; 1. [DOI: 10.15212/amm-2022-0014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Cancer is a consequence of uncontrolled cell proliferation that is associated with cell-cycle disruption. It is a multifactorial disease that depends on the modulation of numerous oncogenic signaling pathways and targets. Although a battle against cancer has been waged for centuries, this disease remains a major cause of death worldwide. Because of the development of resistance to current anticancer drugs, substantial effort has been focused on discovering more effective agents for tumor therapy. Natural products have powerful prospects as anticancer drugs. Brusatol, a component isolated from the plant Brucea javanica, has been demonstrated to efficiently combat a wide variety of tumors. Extensive studies have indicated that brusatol exhibits anticancer effects by arresting the cell cycle; promoting apoptosis; inducing autophagy; attenuating epithelial-mesenchymal transition; inhibiting migration, invasion and angiogenesis; and increasing chemosensitivity and radiosensitivity. These effects involve various oncogenic signaling pathways, including the MAPK, NF-κB, PI3K/AKT/mTOR, JAK/STAT and Keap1/Nrf2/ARE signaling pathways. This review describes the evidence suggesting that brusatol is a promising drug candidate for cancer therapeutics.
Collapse
Affiliation(s)
- Song-Bin Guo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Wei-Juan Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Xiao-Peng Tian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
5
|
Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021; 34:1428-1483. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (NRF2/KEAP1) pathway is a crucial and highly conserved defensive system that is required to maintain or restore the intracellular homeostasis in response to oxidative, electrophilic, and other types of stress conditions. The tight control of NRF2 function is maintained by a complex network of biological interactions between positive and negative regulators that ultimately ensure context-specific activation, culminating in the NRF2-driven transcription of cytoprotective genes. Recent Advances: Recent studies indicate that deregulated NRF2 activation is a frequent event in malignant tumors, wherein it is associated with metabolic reprogramming, increased antioxidant capacity, chemoresistance, and poor clinical outcome. On the other hand, the growing interest in the modulation of the cancer cells' redox balance identified NRF2 as an ideal therapeutic target. Critical Issues: For this reason, many efforts have been made to identify potent and selective NRF2 inhibitors that might be used as single agents or adjuvants of anticancer drugs with redox disrupting properties. Despite the lack of specific NRF2 inhibitors still represents a major clinical hurdle, the researchers have exploited alternative strategies to disrupt NRF2 signaling at different levels of its biological activation. Future Directions: Given its dualistic role in tumor initiation and progression, the identification of the appropriate biological context of NRF2 activation and the specific clinicopathological features of patients cohorts wherein its inactivation is expected to have clinical benefits, will represent a major goal in the field of cancer research. In this review, we will briefly describe the structure and function of the NRF2/ KEAP1 system and some of the most promising NRF2 inhibitors, with a particular emphasis on natural compounds and drug repurposing. Antioxid. Redox Signal. 34, 1428-1483.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
6
|
Yu XQ, Shang XY, Huang XX, Yao GD, Song SJ. Brusatol: A potential anti-tumor quassinoid from Brucea javanica. CHINESE HERBAL MEDICINES 2020; 12:359-366. [PMID: 36120179 PMCID: PMC9476775 DOI: 10.1016/j.chmed.2020.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/08/2020] [Accepted: 05/25/2020] [Indexed: 01/20/2023] Open
Abstract
Brusatol, a triterpene lactone compound mainly from Brucea javanica, sensitizes a broad spectrum of cancer cells. It is known as a specific inhibitor of nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. In this review, we provide a comprehensive overview on the antitumor effect and molecular mechanisms of brusatol in vitro and in vivo. This review also covers pharmacokinetics studies, modification of dosages forms of brusatol. Increasing evidences have validated the value of brusatol as a chemotherapeutic agent in cancers, which may contribute to drug development and clinical application.
Collapse
|
7
|
Hwang N, Pei Y, Clement J, Robertson ES, Du Y. Identification of a 3-β-homoalanine conjugate of brusatol with reduced toxicity in mice. Bioorg Med Chem Lett 2020; 30:127553. [PMID: 32971261 DOI: 10.1016/j.bmcl.2020.127553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Brusatol, a quassinoid natural product, is effective against multiple diseases including hematologic malignancies, as we reported recently by targeting the PI3Kγ isoform, but toxicity limits its further development. Herein, we report the synthesis of a series of conjugates of brusatol with amino acids and short peptides at its enolic hydroxyl at C-3. A number of conjugates with smaller amino acids and peptides demonstrated activities comparable to brusatol. Through in vitro and in vivo evaluations, we identified UPB-26, a conjugate of brusatol with a L- β-homoalanine, which exhibits good chemical stability at physiological pH's (SGF and SIF), moderate rate of conversion to brusatol in both human and rat plasmas, improved mouse liver microsomal stability, and most encouragingly, enhanced safety compared to brusatol in mice upon IP administration.
Collapse
Affiliation(s)
- Nicky Hwang
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Yonggang Pei
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Erle S Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Yanming Du
- Baruch S. Blumberg Institute, Doylestown, PA, USA.
| |
Collapse
|
8
|
Nrf2 Inhibitor, Brusatol in Combination with Trastuzumab Exerts Synergistic Antitumor Activity in HER2-Positive Cancers by Inhibiting Nrf2/HO-1 and HER2-AKT/ERK1/2 Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9867595. [PMID: 32765809 PMCID: PMC7387975 DOI: 10.1155/2020/9867595] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/18/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
The HER2-targeting antibody trastuzumab has shown effectiveness in treating HER2-positive breast and gastric cancers; however, its responses are limited. Currently, Nrf2 has been deemed as a key transcription factor in promoting cancer progression and resistance by crosstalk with other proliferative signaling pathways. Brusatol as a novel Nrf2 inhibitor has been deemed as an efficacious and safe drug candidate in cancer therapy. In this study, we firstly reported that brusatol exerted the growth-inhibitory effects on HER2-positive cancer cells by regressing Nrf2/HO-1 and HER2-AKT/ERK1/2 signaling pathways in these cells. More importantly, we found that brusatol synergistically enhanced the antitumor activity of trastuzumab against HER2-positive SK-OV-3 and BT-474 cells, which may be attributed to the inhibition of Nrf2/HO-1 and HER2-AKT/ERK1/2 signaling pathways. Furthermore, the synergistic effects were also observed in BT-474 and SK-OV-3 tumor xenografts. In addition, our results showed that trastuzumab markedly enhanced brusatol-induced ROS accumulation and apoptosis level, which could further explain the synergistic effects. To conclude, the study provided a new insight on exploring Nrf2 inhibition in combination with HER2-targeted trastuzumab as a potential clinical treatment regimen in treating HER2-positive cancers.
Collapse
|
9
|
Abstract
The basic leucine zipper transcription factor Nrf2 is the primary regulator of cellular oxidative stress. Activation of Nrf2 is regarded as a potential preventive and therapeutic strategy. However, aberrant hyperactivation of Nrf2 is found in a variety of cancers and promotes cancer progression and metastasis. Moreover, constitutive activation of Nrf2 confers cancer cells resistance to chemo- and radio-therapy. Thus, inhibiting Nrf2 could be a new therapeutic strategy for cancer. With the aim of accelerating the discovery and development of novel Nrf2 inhibitors, we summarize the biological and pathological functions of Nrf2 in cancer. Furthermore, the recent studies of small molecular Nrf2 inhibitors and potential Nrf2 inhibitory mechanisms are also summarized in this review.
Collapse
|