1
|
Miranda CTCDS, Soares SD, de Oliveira WQ, Lima ADS, Neri Numa IA, Pastore GM. Unconventional Edible Plants of the Amazon: Bioactive Compounds, Health Benefits, Challenges, and Future Trends. Foods 2024; 13:2925. [PMID: 39335854 PMCID: PMC11431067 DOI: 10.3390/foods13182925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The pursuit of an improved quality of life is a major trend in the food market. This is driving the reformulation of the industry's product portfolio, with the aim of providing nourishment while also contributing to beneficial health metabolic processes. In this context, the use of local biodiversity and the recovery of the traditional knowledge associated with the consumption of vegetables that grow spontaneously in nature emerge as more sustainable and nutritionally adequate concepts. The Amazon region is known for its abundant biodiversity, housing numerous unconventional food plants whose nutritional and biological properties remain unknown due to a lack of research. Among the different species are Xanthosoma sagittifolium, Acmella oleracea, Talinum triangulare, Pereskia bleo, Bidens bipinnata, and Costus spiralis. These species contain bioactive compounds such as apigenin, syringic acid, spilanthol, and lutein, which provide various health benefits. There are few reports on the biological effects, nutritional composition, bioactive compounds, and market prospects for these species. Therefore, this review provides an overview of their nutritional contribution, bioactive compounds, health benefits, and current market, as well as the use of new technologies that can contribute to the development of functional products/ingredients derived from them.
Collapse
Affiliation(s)
- Cynthia Tereza Corrêa da Silva Miranda
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas—UFAM, Manaus 69080-900, AM, Brazil
| | - Stephanie Dias Soares
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
| | - Williara Queiroz de Oliveira
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
| | - Adriana de Souza Lima
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
- Faculty of Tourism and Hospitality, Federal Fluminense University—UFF, Gragoatá Campus, Niterói 24210-200, RJ, Brazil
| | - Iramaia Angélica Neri Numa
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
| | - Gláucia Maria Pastore
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
| |
Collapse
|
2
|
Meng Y, Sui X, Pan X, Yang Y, Sui H, Xu T, Zhang H, Liu T, Liu J, Ge P. An integrated process by ultrasonic enhancement in the deep eutectic solvents system for extraction and separation of chlorogenic acid from Eucommia ulmoides leaves. ULTRASONICS SONOCHEMISTRY 2023; 99:106588. [PMID: 37690261 PMCID: PMC10498307 DOI: 10.1016/j.ultsonch.2023.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
This study established an integrated process for the extraction and enrichment of chlorogenic acid(CGA)from Eucommia ulmoides leaves in a deep eutectic solvent system via ultrasonic wave-enhanced adsorption and desorption practices utilizing macroporous resins. Although deep eutectic solvents (DESs) have the advantages of chemical stability, good dissolving capacity, and nonvolatilization, routine solvent recovery operations are not suitable for subsequent separation in this solvent system. Based on the above characteristics, this study integrated the extraction and enrichment processes, in which DESs extracts directly loaded onto the macroporous adsorption resin, avoiding the loss of target components in solvent recovery and redissolution processes. The screening results of solvents and resin types further showed that choline chloride-malic acid (1:1) was the optimal DES, and the NKA-II resin had high adsorption and elution performance for CGA. The viscosities of the DESs were much higher than those of water and conventional organic solvents; thus, the mass transfer resistance was large, which could also affect the adsorption behaviour of the macroporous resin. The thermal and mechanical effects of ultrasound could effectively enhance the efficiency of the mass transfer, adsorption, and desorption in the DES systems. When compared to no sonication treatment, the CGA adsorption at various ultrasonic powers (120-600 W) was examined. At optimal ethanol concentration (60%), the effect of the ultrasonic treatment on the recovery of the DESs (water eluting process) and the desorption capability of CGA were confirmed. The use of three volumes of water elution could recover the DESs without loss of CGA. The adsorption process significantly differed depending on the ultrasonic settings, and the absorption balance time and experimental adsorption capacity at equilibrium were enhanced. Additionally, the adsorption procedure of the NKA-II macroporous resin for CGA under ultrasonic treatment could be clarified by the pseudo second order kinetic equation and the Freundlich isotherm model. Thermodynamic and dynamic parameters indicated that physical adsorption was the main process of the entire procedure, and it was a spontaneous, exothermic, and entropy-reducing physical adsorption process. This study potentially indicates that the use of ultrasonication, as a high-efficiency, environmentally friendly method, can enhance the features of the macroporous resin to better purify target chemicals from a DES extract.
Collapse
Affiliation(s)
- Yue Meng
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Xiaoyu Sui
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Xu Pan
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Ying Yang
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Huimin Sui
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Tao Xu
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Honglian Zhang
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Tingting Liu
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China; Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, 150040 Harbin, China.
| | - Jicheng Liu
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Pengling Ge
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| |
Collapse
|
3
|
Ye Y, Zhang B, Mai W, Tan Y, Feng Z, Huang Q. Metabolomics study of the hepatoprotective effect of total flavonoids of Mallotus apelta leaf in carbon tetrachloride-induced liver fibrosis in rats. Biomed Chromatogr 2023; 37:e5711. [PMID: 37593807 DOI: 10.1002/bmc.5711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Mallotus apelta leaf, recorded in the quality standard of Yao Medicinal Material in Guangxi Zhuang autonomous region, is commonly used in the treatment of liver diseases. Total flavonoids of M. apelta leaf (TFM) had good anti-fibrosis activity, but the anti-fibrosis mechanism of TFM is still unclear. Nuclear magnetic resonance technology was used to study the dynamic changes of urine metabolites in CCl4 -induced liver fibrosis before and after TFM treatment. Ingenuity Path Analysis (IPA) was used to find potential target genes for TFM to improve liver fibrosis and verify the expression of target genes by real-time fluorescent quantitative PCR and Western blotting. TFM can significantly reduce serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) levels, improve liver steatosis and reduce inflammation; in urine metabolomics, a total of seven potential biomarkers were found, mainly involving two metabolic pathways; IPA analysis showed that TNF may be a potential target for TFM to improve liver fibrosis induced by CCl4 in rats. This study found that TNF may be a potential target gene for TFM treatment of liver fibrosis, and shows that the anti-fibrosis mechanism of TFM could improve liver fibrosis by regulating the tricarboxylic acid cycle and subtaurine metabolism.
Collapse
Affiliation(s)
- Yong Ye
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Wanting Mai
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanjun Tan
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Zhongwen Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiujie Huang
- Pharmaceutical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
4
|
Umeoguaju FU, Akaninwor JO, Essien EB, Amadi BA, Chukeze EJ, Nwafor IR. Macroporous adsorptive resin-assisted enrichment of polyphenol from Psidium guajava leaves improved its in vitro antioxidant and anti-hemolytic properties. Prep Biochem Biotechnol 2022:1-8. [PMID: 36449397 DOI: 10.1080/10826068.2022.2150932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Phytochemical analyses of guava leaf extracts, commonly applied in traditional medicine, revealed the presence of several bioactive polyphenols. In this study, we optimized the enrichment of total polyphenol from Guava leaf ethanolic extract (GEE) using six macroporous adsorptive resins (MAR) including AB8, D101, X5, ADS17, S400, and AD7. Also investigated are the contributions of adsorption time, extract concentration, pH, elution time, and eluent ethanol concentrations on the polyphenol enrichment potential of MAR. The antioxidant and anti-hemolytic properties of the crude and polyphenol-rich extracts were determined. Our results indicate that treatment of GEE extract with AB8 MAR at a concentration of 15 mg GEE/g resin, adsorption time of 45 min, elution time of 40 min, and eluent ethanol concentration of 50% (v/v) improved the flavonoids and phenol concentration of GEE by 2 and 2.5 folds respectively. The DPPH radical scavenging, ferric reducing ability of the plasma (FRAP), anti-hemolytic and anti-peroxidation activity of the resultant polyphenol-rich extracts improved by 1.5, 1.6, 1.4, and 1.88 folds respectively, when compared to the crude extract. Our work shows that the MAR-assisted enrichment operation is a rapid, feasible, and economical strategy for enriching bioactive polyphenols from guava leaf extracts.
Collapse
Affiliation(s)
- Francis Uchenna Umeoguaju
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, PMB, Port Harcourt, Nigeria
| | - Joyce Oronne Akaninwor
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, PMB, Port Harcourt, Nigeria
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Port Harcourt, Nigeria
| | - Eka Bassey Essien
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, PMB, Port Harcourt, Nigeria
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Port Harcourt, Nigeria
| | - Benjamin Achor Amadi
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, PMB, Port Harcourt, Nigeria
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Port Harcourt, Nigeria
| | | | | |
Collapse
|
5
|
Optimization of Ultrasound-Assisted Cellulase Extraction from Nymphaea hybrid Flower and Biological Activities: Antioxidant Activity, Protective Effect against ROS Oxidative Damage in HaCaT Cells and Inhibition of Melanin Production in B16 Cells. Molecules 2022; 27:molecules27061914. [PMID: 35335279 PMCID: PMC8949894 DOI: 10.3390/molecules27061914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, ultrasonic-assisted cellulase extraction (UCE) was applied to extract flavonoids and polyphenols from the Nymphaea hybrid flower. The extraction conditions were optimized using the response surface method (RSM) coupled with a Box-Behnken design. The crude extract of Nymphaea hybrid (NHE) was further purified using AB-8 macroporous resins, and the purified extract (NHEP) was characterized by FTIR and HPLC. In vitro activity determination by chemical method showed that NHEP displayed strong free radical scavenging abilities against the DPPH and ABTS radicals, good reduction power, and hyaluronidase inhibition. The cell viability by CCK-8 assays showed that NHEP had no significant cytotoxicity for B16 and HaCaT cells when the concentration was below 100 μg/mL and 120 μg/mL, respectively. NHEP with a concentration of 20–160 μg/mL can more effectively reduce the ROS level in H2O2 damaged HaCaT cells compared with 10 μg/mL of VC. The 40 μg/mL of NHEP had similar activity against intracellular melanin production in the B16 melanoma cells compared with 20 μg/mL Kojic acid. Good activities of antioxidation, whitening and protective effect against H2O2-induced oxidative damage promote the potential for NHEP as a functional raw material in the field of cosmetics and medicine.
Collapse
|
6
|
Wu L, Nie L, Guo S, Wang Q, Wu Z, Lin Y, Wang Y, Li B, Gao T, Yao H. Identification of Medicinal Bidens Plants for Quality Control Based on Organelle Genomes. Front Pharmacol 2022; 13:842131. [PMID: 35242042 PMCID: PMC8887618 DOI: 10.3389/fphar.2022.842131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 12/02/2022] Open
Abstract
Bidens plants are annuals or perennials of Asteraceae and usually used as medicinal materials in China. They are difficult to identify by using traditional identification methods because they have similar morphologies and chemical components. Universal DNA barcodes also cannot identify Bidens species effectively. This situation seriously hinders the development of medicinal Bidens plants. Therefore, developing an accurate and effective method for identifying medicinal Bidens plants is urgently needed. The present study aims to use phylogenomic approaches based on organelle genomes to address the confusing relationships of medicinal Bidens plants. Illumina sequencing was used to sequence 12 chloroplast and eight mitochondrial genomes of five species and one variety of Bidens. The complete organelle genomes were assembled, annotated and analysed. Phylogenetic trees were constructed on the basis of the organelle genomes and highly variable regions. The organelle genomes of these Bidens species had a conserved gene content and codon usage. The 12 chloroplast genomes of the Bidens species were 150,489 bp to 151,635 bp in length. The lengths of the eight mitochondrial genomes varied from each other. Bioinformatics analysis revealed the presence of 50–71 simple sequence repeats and 46–181 long repeats in the organelle genomes. By combining the results of mVISTA and nucleotide diversity analyses, seven candidate highly variable regions in the chloroplast genomes were screened for species identification and relationship studies. Comparison with the complete mitochondrial genomes and common protein-coding genes shared by each organelle genome revealed that the complete chloroplast genomes had the highest discriminatory power for Bidens species and thus could be used as a super barcode to authenticate Bidens species accurately. In addition, the screened highly variable region trnS-GGA-rps4 could be also used as a potential specific barcode to identify Bidens species.
Collapse
Affiliation(s)
- Liwei Wu
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liping Nie
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shiying Guo
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Qing Wang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengjun Wu
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Yulin Lin
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoli Li
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Gao
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hui Yao
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, China
- *Correspondence: Hui Yao,
| |
Collapse
|
7
|
Ogidigo JO, Anosike CA, Joshua PE, Ibeji CU, Ekpo DE, Nwanguma BC, Nwodo OFC. UPLC-PDA-ESI-QTOF-MS/MS fingerprint of purified flavonoid enriched fraction of Bryophyllum pinnatum; antioxidant properties, anticholinesterase activity and in silico studies. PHARMACEUTICAL BIOLOGY 2021; 59:444-456. [PMID: 33930998 PMCID: PMC8871626 DOI: 10.1080/13880209.2021.1913189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
CONTEXT Bryophyllum pinnatum (Lam.) Oken (Crassulaceae) is used traditionally to treat many ailments. OBJECTIVES This study characterizes the constituents of B. pinnatum flavonoid-rich fraction (BPFRF) and investigates their antioxidant and anticholinesterase activity using in vitro and in silico approaches. MATERIALS AND METHODS Methanol extract of B. pinnatum leaves was partitioned to yield the ethyl acetate fraction. BPFRF was isolated from the ethyl acetate fraction and purified. The constituent flavonoids were structurally characterized using UPLC-PDA-MS2. Antioxidant activity (DPPH), Fe2+-induced lipid peroxidation (LP) and anticholinesterase activity (Ellman's method) of the BPFRF and standards (ascorbic acid and rivastigmine) across a concentration range of 3.125-100 μg/mL were evaluated in vitro for 4 months. Molecular docking was performed to give insight into the binding potentials of BPFRF constituents against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). RESULTS UPLC-PDA-MS2 analysis of BPFRF identified carlinoside, quercetin (most dominant), luteolin, isorhamnetin, luteolin-7-glucoside. Carlinoside was first reported in this plant. BPFRF significantly inhibited DPPH radical (IC50 = 7.382 ± 0.79 µg/mL) and LP (IC50 = 7.182 ± 0.60 µg/mL) better than quercetin and ascorbic acid. Also, BPFRF exhibited potent inhibition against AChE and BuChE with IC50 values of 22.283 ± 0.27 µg/mL and 33.437 ± 1.46 µg/mL, respectively compared to quercetin and rivastigmine. Docking studies revealed that luteolin-7-glucoside, carlinoside and quercetin interact effectively with crucial amino acid residues of AChE and BuChE through hydrogen bonds. DISCUSSION AND CONCLUSIONS BPFRF possesses an excellent natural source of cholinesterase inhibitor and antioxidant. The material could be further explored for the potential treatment of oxidative damage and cholinergic dysfunction in Alzheimer's disease.
Collapse
Affiliation(s)
- Joyce Oloaigbe Ogidigo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- Bioresources Development Centre, National Biotechnology Development Agency, Abuja, Nigeria
- CONTACT Joyce Oloaigbe Ogidigo ;
| | - Chioma Assumpta Anosike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- Chioma Assumpta Anosike Department of Biochemistry, Faculty of Biological Sciences, Univeristy of Nigeria, Nsukka41001, Enugu State, Nigeria
| | - Parker Elijah Joshua
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Collins U. Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Daniel Emmanuel Ekpo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Bennett C. Nwanguma
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Okwesili Fred Chiletugo Nwodo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- Department of Biochemistry, Mkar University, Benue State, Nigeria
| |
Collapse
|