1
|
Luan X, Zhang X, Nie M, Zhao Y. Traditional Chinese Medicine Integrated Responsive Microneedles for Systemic Sclerosis Treatment. RESEARCH (WASHINGTON, D.C.) 2023; 6:0141. [PMID: 37228639 PMCID: PMC10204745 DOI: 10.34133/research.0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Traditional Chinese medicine, such as Tripterygium wilfordii and Paeonia lactiflora, has potential values in treating systemic sclerosis (SSc) and other autoimmune diseases, while their toxic side effect elimination and precise tropical drug delivery are still challenges. Here, we present multiple traditional Chinese medicine integrated photoresponsive black phosphorus (BP) microneedles (MNs) with the desired features for the SSc treatment. By employing a template-assisted layer-by-layer curing method, such MNs with triptolide (TP)/paeoniflorin (Pae) needle tips and BP-hydrogel needle bottoms could be well generated. The combined administration of TP and Pae can not only provide anti-inflammatory, detoxification, and immunomodulatory effects to treat skin lesions in the early stage of SSc but also remarkably reduce the toxicity of single drug delivery. Besides, the additive BPs possess good biocompatibility and near-infrared (NIR) responsiveness, imparting the MN photothermal-controlled drug release capability. Based on these features, we have demonstrated that the traditional Chinese medicine integrated responsive MNs could effectively improve skin fibrosis and telangiectasia, reduce collagen deposition, and reduce epidermal thickness in the SSc mouse models. These results indicated that the proposed Chinese medicine integrated responsive MNs had enormous potential in clinical therapy of SSc and other diseases.
Collapse
Affiliation(s)
- Xi Luan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Pharmacy, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoxuan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Min Nie
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Pharmacy, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Pharmacy, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
2
|
Cao Z, Liu B, Li L, Lu P, Yan L, Lu C. Detoxification strategies of triptolide based on drug combinations and targeted delivery methods. Toxicology 2022; 469:153134. [PMID: 35202762 DOI: 10.1016/j.tox.2022.153134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Tripterygium wilfordii Hook f. has a long history of use in Chinese medicine. Triptolide (TP), as its main pharmacological component, has been widely explored in various diseases, including systemic lupus erythematosus, rheumatoid arthritis and cancer. However, due to its poor water solubility, limited therapeutic range and multi-organ toxicity, TP's clinical application has been greatly hampered. To improve its clinical potential, many attenuated drug combinations have been developed based on its toxicity mechanism and targeted delivery systems aimed at its water-solubility and structure. This review, conducted a systematic review of TP detoxification strategies including drug combination detoxification strategies from metabolic and toxic mechanisms, as well as drug delivery detoxification strategies from the prodrug strategy and nanotechnology. Many detoxification strategies have demonstrated promising potential in vitro and in vivo due to previous extensive studies on TP. Therefore, summarizing and discussing TP detoxification strategies for clinical problems can serve as a reference for developing novel TP detoxification strategies, and provide opportunities for future clinical applications.
Collapse
Affiliation(s)
- Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Tong L, Zhao Q, Datan E, Lin GQ, Minn I, Pomper MG, Yu B, Romo D, He QL, Liu JO. Triptolide: reflections on two decades of research and prospects for the future. Nat Prod Rep 2021; 38:843-860. [PMID: 33146205 DOI: 10.1039/d0np00054j] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2000 to 2020 Triptolide is a bioactive diterpene triepoxide isolated from Tripterygium wilfordii Hook F, a traditional Chinese medicinal plant whose extracts have been used as anti-inflammatory and immunosuppressive remedies for centuries. Although triptolide and its analogs exhibit potent bioactivities against various cancers, and inflammatory and autoimmune diseases, none of them has been approved to be used in the clinic. This review highlights advances in material sourcing, molecular mechanisms, clinical progress and new drug design strategies for triptolide over the past two decades, along with some prospects for the future course of development of triptolide.
Collapse
Affiliation(s)
- Lu Tong
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Qunfei Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Emmanuel Datan
- Department of Pharmacology, Johns Hopkins School of Medicine, 725 North Wolfe Street, Hunterian Building, Room 516, Baltimore, MD 21205, USA.
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. and CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Daniel Romo
- Department of Chemistry and Biochemistry, The CPRIT Synthesis and Drug Lead Discovery Laboratory, Baylor University, Waco, Texas 76710, USA
| | - Qing-Li He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Jun O Liu
- Department of Pharmacology, Johns Hopkins School of Medicine, 725 North Wolfe Street, Hunterian Building, Room 516, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Deng X, Zeng T, Li J, Huang C, Yu M, Wang X, Tan L, Zhang M, Li A, Hu J. Kidney-targeted triptolide-encapsulated mesoscale nanoparticles for high-efficiency treatment of kidney injury. Biomater Sci 2019; 7:5312-5323. [PMID: 31617509 DOI: 10.1039/c9bm01290g] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insolubility and toxicity of TP restrict clinical applications in renal diseases. Here, TP-encapsulated mesoscale nanoparticles offer a new therapeutic strategy for renal diseases due to good biocompability, kidney targeting and slow release.
Collapse
|
5
|
Xu Y, Chen X, Zhong D. A sensitive LC–MS/MS method for the determination of triptolide and its application to pharmacokinetic research in rats. Biomed Chromatogr 2018; 33:e4422. [DOI: 10.1002/bmc.4422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Ye Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing China
| | - Xiaoyan Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing China
| | - Dafang Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
6
|
Büyüktimkin B, Stewart J, Tabanor K, Kiptoo P, Siahaan TJ. Protein and Peptide Conjugates for Targeting Therapeutics and Diagnostics to Specific Cells. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
7
|
Zhou P, Sun X, Gong T, Zhang Z, Zhang L. Conjugating glucosamine to triptolide to enhance its protective effect against renal ischemia-reperfusion injury and reduce its toxicity. J Drug Target 2014; 22:200-210. [DOI: 10.3109/1061186x.2013.856011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Peptide fragments of human serum albumin as novel renal targeting carriers. Int J Pharm 2014; 460:196-204. [DOI: 10.1016/j.ijpharm.2013.10.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/08/2013] [Accepted: 10/17/2013] [Indexed: 11/16/2022]
|
9
|
Zhang Z, Zheng Q, Han J, Gao G, Liu J, Gong T, Gu Z, Huang Y, Sun X, He Q. The targeting of 14-succinate triptolide-lysozyme conjugate to proximal renal tubular epithelial cells. Biomaterials 2009; 30:1372-81. [DOI: 10.1016/j.biomaterials.2008.11.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 11/27/2008] [Indexed: 11/29/2022]
|