1
|
Candia-Rivera D, Engelen T, Babo-Rebelo M, Salamone PC. Interoception, network physiology and the emergence of bodily self-awareness. Neurosci Biobehav Rev 2024; 165:105864. [PMID: 39208877 DOI: 10.1016/j.neubiorev.2024.105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The interplay between the brain and interoceptive signals is key in maintaining internal balance and orchestrating neural dynamics, encompassing influences on perceptual and self-awareness. Central to this interplay is the differentiation between the external world, others and the self, a cornerstone in the construction of bodily self-awareness. This review synthesizes physiological and behavioral evidence illustrating how interoceptive signals can mediate or influence bodily self-awareness, by encompassing interactions with various sensory modalities. To deepen our understanding of the basis of bodily self-awareness, we propose a network physiology perspective. This approach explores complex neural computations across multiple nodes, shifting the focus from localized areas to large-scale neural networks. It examines how these networks operate in parallel with and adapt to changes in visceral activities. Within this framework, we propose to investigate physiological factors that disrupt bodily self-awareness, emphasizing the impact of interoceptive pathway disruptions, offering insights across several clinical contexts. This integrative perspective not only can enhance the accuracy of mental health assessments but also paves the way for targeted interventions.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR7225, INSERM U1127, Hôpital de la Pitié-Salpêtrière AP-HP, Inria Paris, 75013, Paris, France.
| | - Tahnée Engelen
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Mattilanniemi 6, Jyväskylä FI-40014, Finland
| | - Mariana Babo-Rebelo
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Paula C Salamone
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Lanshakov DA, Sukhareva EV, Bulygina VV, Khozyainova AA, Gerashchenko TS, Denisov EV, Kalinina TS. Brainstem transcriptomic changes in male Wistar rats after acute stress, comparing the use of duplex specific nuclease (DSN). Sci Rep 2024; 14:21856. [PMID: 39300279 DOI: 10.1038/s41598-024-73042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
In this work, we have analyzed the transcriptomic changes in the brainstem of male Wistar rats 2 h after an acute stress exposure. We performed duplex-specific nuclease normalization of cDNA libraries and compared the results back-to-back for the first time. Based on our RNAseq data, we selected reference genes for RT-qPCR that are best suited for acute stress experiments. Most genes were upregulated. We detected a massive shift in neuropeptide Crh, Trh,Cga, Tshb, Uts2b, Tac4, Lep and neuropeptide receptor Hcrtr1, Sstr5, Bdkrb2, Crhr2 signaling, as well as glutamate Grin3b, Grm2 and GABA Gpr156, acetylcholine Chrm4,Chrne, adrenergic Adra2b receptors expression. A strong increase in the expression of intermediate filaments Krt83/Krt86/Krt80/Krt84/Krt87/Krt4/Krt76 and motor proteins Myo7a, Klc3 was detected. Remarkably, in the absence of astrocyte activation, we also observed signs of microglial activation at this time point. Both expression of anti-inflammatory cytokines Il13, Ccl24 and pro-inflammatory cytokine receptors Il9r, Il12rb1, Tnfrsf14, Tnfrsf13c, Tnfrsf25, Tnfrsf1b were increased. In the Wnt signaling pathway, we observed increased expression of ligands-receptors Wnt1, Wnt11, Ror2 and also negative regulators Notum, Sfrp5, Sost. RNAseq results after DSN treatment correlated at a high level with RNAseq results without DSN, but there was a proportion of genes that shifted their logFC values. They are mostly rare transcripts TPM 1-10 with higher 0.5-0.9 GC content.
Collapse
Affiliation(s)
- Dmitriy A Lanshakov
- Postgenomics Neurobiology Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation.
- Natural Science Department, Novosibirsk State University, Novosibirsk, Russian Federation.
| | - Ekaterina V Sukhareva
- Postgenomics Neurobiology Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation
| | - Veta V Bulygina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation
| | - Anna A Khozyainova
- Laboratory of Cancer Progression Biology, Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Tatiana S Gerashchenko
- Laboratory of Cancer Progression Biology, Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Tatyana S Kalinina
- Natural Science Department, Novosibirsk State University, Novosibirsk, Russian Federation
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russian Federation
| |
Collapse
|
3
|
Riganello F, Vatrano M, Cortese MD, Tonin P, Soddu A. Central autonomic network and early prognosis in patients with disorders of consciousness. Sci Rep 2024; 14:1610. [PMID: 38238457 PMCID: PMC10796939 DOI: 10.1038/s41598-024-51457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
The central autonomic network (CAN) plays a crucial role in modulating the autonomic nervous system. Heart rate variability (HRV) is a valuable marker for assessing CAN function in disorders of consciousness (DOC) patients. We used HRV analysis for early prognosis in 58 DOC patients enrolled within ten days of hospitalization. They underwent a five-minute electrocardiogram during baseline and acoustic/visual stimulation. The coma recovery scale-revised (CRS-R) was used to define the patient's consciousness level and categorize the good/bad outcome at three months. The high-frequency Power Spectrum Density and the standard deviation of normal-to-normal peaks in baseline, the sample entropy during the stimulation, and the time from injury features were used in the support vector machine analysis (SVM) for outcome prediction. The SVM predicted the patients' outcome with an accuracy of 96% in the training test and 100% in the validation test, underscoring its potential to provide crucial clinical information about prognosis.
Collapse
Affiliation(s)
- Francesco Riganello
- Reseach in Advanced Neurorehabilitation, S. Anna Institute, 88900, Crotone, Italy.
| | - Martina Vatrano
- Reseach in Advanced Neurorehabilitation, S. Anna Institute, 88900, Crotone, Italy
| | | | - Paolo Tonin
- Reseach in Advanced Neurorehabilitation, S. Anna Institute, 88900, Crotone, Italy
| | - Andrea Soddu
- Physics & Astronomy Department and Western Institute for Neuroscience, University of Western Ontario, London, ON, Canada
| |
Collapse
|
4
|
Candia-Rivera D, Raimondo F, Pérez P, Naccache L, Tallon-Baudry C, Sitt JD. Conscious processing of global and local auditory irregularities causes differentiated heartbeat-evoked responses. eLife 2023; 12:e75352. [PMID: 37888955 PMCID: PMC10651171 DOI: 10.7554/elife.75352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 10/24/2023] [Indexed: 10/28/2023] Open
Abstract
Recent research suggests that brain-heart interactions are associated with perceptual and self-consciousness. In this line, the neural responses to visceral inputs have been hypothesized to play a leading role in shaping our subjective experience. This study aims to investigate whether the contextual processing of auditory irregularities modulates both direct neuronal responses to the auditory stimuli (ERPs) and the neural responses to heartbeats, as measured with heartbeat-evoked responses (HERs). HERs were computed in patients with disorders of consciousness, diagnosed with a minimally conscious state or unresponsive wakefulness syndrome. We tested whether HERs reflect conscious auditory perception, which can potentially provide additional information for the consciousness diagnosis. EEG recordings were taken during the local-global paradigm, which evaluates the capacity of a patient to detect the appearance of auditory irregularities at local (short-term) and global (long-term) levels. The results show that local and global effects produce distinct ERPs and HERs, which can help distinguish between the minimally conscious state and unresponsive wakefulness syndrome patients. Furthermore, we found that ERP and HER responses were not correlated suggesting that independent neuronal mechanisms are behind them. These findings suggest that HER modulations in response to auditory irregularities, especially local irregularities, may be used as a novel neural marker of consciousness and may aid in the bedside diagnosis of disorders of consciousness with a more cost-effective option than neuroimaging methods.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’Etudes Cognitives, École Normale Supérieure, INSERM, Université PSLParisFrance
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Federico Raimondo
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Forschungszentrum JülichJülichGermany
- Institute of Systems Neuroscience, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Pauline Pérez
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- AP-HP, Hôpital de la Pitié Salpêtrière, Neuro ICU, DMU NeurosciencesParisFrance
| | - Lionel Naccache
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- Pitié-Salpêtrière Faculty of Medicine, Pierre and Marie Curie University, Sorbonne UniversitiesParisFrance
- INSERM, National Institute of Health and Medical ResearchParisFrance
- Department of Neurology, Pitié-Salpêtrière Hospital Group, Public Hospital Network of ParisParisFrance
- Department of Neurophysiology, Pitié-Salpêtrière Hospital Group, Public Hospital Network of ParisParisFrance
| | - Catherine Tallon-Baudry
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’Etudes Cognitives, École Normale Supérieure, INSERM, Université PSLParisFrance
| | - Jacobo D Sitt
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- INSERM, National Institute of Health and Medical ResearchParisFrance
| |
Collapse
|
5
|
Candia-Rivera D, Machado C. Multidimensional assessment of heartbeat-evoked responses in disorders of consciousness. Eur J Neurosci 2023; 58:3098-3110. [PMID: 37382151 DOI: 10.1111/ejn.16079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Because consciousness does not necessarily translate into overt behaviour, detecting residual consciousness in noncommunicating patients remains a challenge. Bedside diagnostic methods based on EEG are promising and cost-effective alternatives to detect residual consciousness. Recent evidence showed that the cortical activations triggered by each heartbeat, namely, heartbeat-evoked responses (HERs), can detect through machine learning the presence of minimal consciousness and distinguish between overt and covert minimal consciousness. In this study, we explore different markers to characterize HERs to investigate whether different dimensions of the neural responses to heartbeats provide complementary information that is not typically found under standard event-related potential analyses. We evaluated HERs and EEG average non-locked to heartbeats in six types of participants: healthy state, locked-in syndrome, minimally conscious state, vegetative state/unresponsive wakefulness syndrome, comatose and brain-dead patients. We computed a series of markers from HERs that can generally separate the unconscious from the conscious. Our findings indicate that HER variance and HER frontal segregation tend to be higher in the presence of consciousness. These indices, when combined with heart rate variability, have the potential to enhance the differentiation between different levels of awareness. We propose that a multidimensional evaluation of brain-heart interactions could be included in a battery of tests to characterize disorders of consciousness. Our results may motivate further exploration of markers in brain-heart communication for the detection of consciousness at the bedside. The development of diagnostic methods based on brain-heart interactions may be translated into more feasible methods for clinical practice.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Paris Brain Institute - ICM, CNRS, INRIA, INSERM, AP-HP, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Calixto Machado
- Department of Clinical Neurophysiology, Institute of Neurology and Neurosurgery, Havana, Cuba
| |
Collapse
|
6
|
Magnon V, Vallet GT, Benson A, Mermillod M, Chausse P, Lacroix A, Bouillon-Minois JB, Dutheil F. Does heart rate variability predict better executive functioning? A systematic review and meta-analysis. Cortex 2022; 155:218-236. [DOI: 10.1016/j.cortex.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 12/20/2022]
|
7
|
Ultrasound-Mediated Blood-Brain Barrier Opening Improves Whole Brain Gene Delivery in Mice. Pharmaceutics 2021; 13:pharmaceutics13081245. [PMID: 34452206 PMCID: PMC8399273 DOI: 10.3390/pharmaceutics13081245] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 02/05/2023] Open
Abstract
Gene therapy represents a powerful therapeutic tool to treat diseased tissues and provide a durable and effective correction. The central nervous system (CNS) is the target of many gene therapy protocols, but its high complexity makes it one of the most difficult organs to reach, in part due to the blood-brain barrier that protects it from external threats. Focused ultrasound (FUS) coupled with microbubbles appears as a technological breakthrough to deliver therapeutic agents into the CNS. While most studies focus on a specific targeted area of the brain, the present work proposes to permeabilize the entire brain for gene therapy in several pathologies. Our results show that, after i.v. administration and FUS sonication in a raster scan manner, a self-complementary AAV9-CMV-GFP vector strongly and safely infected the whole brain of mice. An increase in vector DNA (19.8 times), GFP mRNA (16.4 times), and GFP protein levels (17.4 times) was measured in whole brain extracts of FUS-treated GFP injected mice compared to non-FUS GFP injected mice. In addition to this increase in GFP levels, on average, a 7.3-fold increase of infected cells in the cortex, hippocampus, and striatum was observed. No side effects were detected in the brain of treated mice. The combining of FUS and AAV-based gene delivery represents a significant improvement in the treatment of neurological genetic diseases.
Collapse
|
8
|
Goldstein Ferber S, Shoval G, Zalsman G, Mikulincer M, Weller A. Between Action and Emotional Survival During the COVID-19 era: Sensorimotor Pathways as Control Systems of Transdiagnostic Anxiety-Related Intolerance to Uncertainty. Front Psychiatry 2021; 12:680403. [PMID: 34393847 PMCID: PMC8358206 DOI: 10.3389/fpsyt.2021.680403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/16/2021] [Indexed: 12/29/2022] Open
Abstract
Objectives: The COVID-19 pandemic and aligned social and physical distancing regulations increase the sense of uncertainty, intensifying the risk for psychopathology globally. Anxiety disorders are associated with intolerance to uncertainty. In this review we describe brain circuits and sensorimotor pathways involved in human reactions to uncertainty. We present the healthy mode of coping with uncertainty and discuss deviations from this mode. Methods: Literature search of PubMed and Google Scholar. Results: As manifestation of anxiety disorders includes peripheral reactions and negative cognitions, we suggest an integrative model of threat cognitions modulated by sensorimotor regions: "The Sensorimotor-Cognitive-Integration-Circuit." The model emphasizes autonomic nervous system coupling with the cortex, addressing peripheral anxious reactions to uncertainty, pathways connecting cortical regions and cost-reward evaluation circuits to sensorimotor regions, filtered by the amygdala and basal ganglia. Of special interest are the ascending and descending tracts for sensory-motor crosstalk in healthy and pathological conditions. We include arguments regarding uncertainty in anxiety reactions to the pandemic and derive from our model treatment suggestions which are supported by scientific evidence. Our model is based on systematic control theories and emphasizes the role of goal conflict regulation in health and pathology. We also address anxiety reactions as a spectrum ranging from healthy to pathological coping with uncertainty, and present this spectrum as a transdiagnostic entity in accordance with recent claims and models. Conclusions: The human need for controllability and predictability suggests that anxiety disorders reactive to the pandemic's uncertainties reflect pathological disorganization of top-down bottom-up signaling and neural noise resulting from non-pathological human needs for coherence in life.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Gal Shoval
- Geha Mental Health Center, Petah Tiqva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Gil Zalsman
- Geha Mental Health Center, Petah Tiqva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, United States
| | - Mario Mikulincer
- Interdisciplinary Center (IDC) Herzliya, Baruch Ivcher School of Psychology, Herzliya, Israel
| | - Aron Weller
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
9
|
Sattin D, Duran D, Visintini S, Schiaffi E, Panzica F, Carozzi C, Rossi Sebastiano D, Visani E, Tobaldini E, Carandina A, Citterio V, Magnani FG, Cacciatore M, Orena E, Montano N, Caldiroli D, Franceschetti S, Picozzi M, Matilde L. Analyzing the Loss and the Recovery of Consciousness: Functional Connectivity Patterns and Changes in Heart Rate Variability During Propofol-Induced Anesthesia. Front Syst Neurosci 2021; 15:652080. [PMID: 33889078 PMCID: PMC8055941 DOI: 10.3389/fnsys.2021.652080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
The analysis of the central and the autonomic nervous systems (CNS, ANS) activities during general anesthesia (GA) provides fundamental information for the study of neural processes that support alterations of the consciousness level. In the present pilot study, we analyzed EEG signals and the heart rate (HR) variability (HRV) in a sample of 11 patients undergoing spinal surgery to investigate their CNS and ANS activities during GA obtained with propofol administration. Data were analyzed during different stages of GA: baseline, the first period of anesthetic induction, the period before the loss of consciousness, the first period after propofol discontinuation, and the period before the recovery of consciousness (ROC). In EEG spectral analysis, we found a decrease in posterior alpha and beta power in all cortical areas observed, except the occipital ones, and an increase in delta power, mainly during the induction phase. In EEG connectivity analysis, we found a significant increase of local efficiency index in alpha and delta bands between baseline and loss of consciousness as well as between baseline and ROC in delta band only and a significant reduction of the characteristic path length in alpha band between the baseline and ROC. Moreover, connectivity results showed that in the alpha band there was mainly a progressive increase in the number and in the strength of incoming connections in the frontal region, while in the beta band the parietal region showed mainly a significant increase in the number and in the strength of outcoming connections values. The HRV analysis showed that the induction of anesthesia with propofol was associated with a progressive decrease in complexity and a consequent increase in the regularity indexes and that the anesthetic procedure determined bradycardia which was accompanied by an increase in cardiac sympathetic modulation and a decrease in cardiac parasympathetic modulation during the induction. Overall, the results of this pilot study showed as propofol-induced anesthesia caused modifications on EEG signal, leading to a "rebalance" between long and short-range cortical connections, and had a direct effect on the cardiac system. Our data suggest interesting perspectives for the interactions between the central and autonomic nervous systems for the modulation of the consciousness level.
Collapse
Affiliation(s)
- Davide Sattin
- Neurology, Public Health, Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Clinical and Experimental Medicine and Medical Humanities-PhD Program, Insubria University, Varese, Italy
| | - Dunja Duran
- Clinical and Experimental Epileptology Division, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sergio Visintini
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Schiaffi
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ferruccio Panzica
- Clinical Engineering Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carla Carozzi
- Department of Anaesthesia, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Elisa Visani
- Clinical and Experimental Epileptology Division, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Tobaldini
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Angelica Carandina
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Valeria Citterio
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Francesca Giulia Magnani
- Neurology, Public Health, Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Martina Cacciatore
- Neurology, Public Health, Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Orena
- Department of Anaesthesia, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nicola Montano
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Dario Caldiroli
- Department of Anaesthesia, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvana Franceschetti
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mario Picozzi
- Center for Clinical Ethics, Biotechnology and Life Sciences Department, Insubria University, Varese, Italy
| | - Leonardi Matilde
- Neurology, Public Health, Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
10
|
Sattin D, Leonardi M, Picozzi M. The autonomic nervous system and the brainstem: A fundamental role or the background actors for consciousness generation? Hypothesis, evidence, and future directions for rehabilitation and theoretical approaches. Brain Behav 2020; 10:e01474. [PMID: 31782916 PMCID: PMC6955833 DOI: 10.1002/brb3.1474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION One of the hardest challenges of the third century is to develop theories that could joint different results for a global explanation of human consciousness. Some important theories have been proposed, trying to explain the emergence of consciousness as the result of different progressive changes in the elaboration of information during brain processing, giving particular attention to the thalamocortical system. METHODS In this article, a summary review of results that highlighted as cerebral cortex could not be so fundamental for consciousness generation is proposed. In detail, three topics were analyzed: (a) studies using experimental approach (manipulating stimuli or brain areas), such as decorticated animals or subliminal presentation of stimuli; (b) studies using anatomo-clinical method (conscious inferenced from observed behaviors); and (c) data from neurostimulation of subcortical areas or of the autonomic nervous system. RESULTS We sketch two speculative hypothesis relative, firstly, to the possible independence from cortical areas of the on/off mechanism for consciousness generation and, secondly, to the possible role of information variability generated by the bottom-up exchange of information among neural systems as a switch for consciousness. CONCLUSIONS A broad range of evidence regarding the functional role of the brainstem and autonomic nervous system is reviewed for its bearing on a future hypothesis regarding the generation of consciousness experience.
Collapse
Affiliation(s)
- Davide Sattin
- Neurology, Public Health, Disability Unit and Coma Research CentreFondazione IRCCS Istituto Neurologico C.BestaMilanItaly
- Experimental Medicine and Medical Humanities‐PhD ProgramBiotechnology and Life Sciences Department and Center for Clinical EthicsInsubria UniversityVareseItaly
| | - Matilde Leonardi
- Neurology, Public Health, Disability Unit and Coma Research CentreFondazione IRCCS Istituto Neurologico C.BestaMilanItaly
| | - Mario Picozzi
- Biotechnology and Life Sciences Department and Center for Clinical EthicsInsubria UniversityVareseItaly
| |
Collapse
|