1
|
Liu Z, Zhang L, Bai L, Guo Z, Gao J, Lin Y, Zhou Y, Lai J, Tao J, Chen L. Repetitive Transcranial Magnetic Stimulation and Tai Chi Chuan for Older Adults With Sleep Disorders and Mild Cognitive Impairment: A Randomized Clinical Trial. JAMA Netw Open 2025; 8:e2454307. [PMID: 39792383 DOI: 10.1001/jamanetworkopen.2024.54307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Importance Sleep disorders and mild cognitive impairment (MCI) commonly coexist in older adults, increasing their risk of developing dementia. Long-term tai chi chuan has been proven to improve sleep quality in older adults. However, their adherence to extended training regimens can be challenging. Repetitive transcranial magnetic stimulation (rTMS) is a neuromodulation technique that may enhance the benefits of exercise. Objective To investigate whether 1-Hz rTMS of the right dorsolateral prefrontal cortex could enhance the clinical benefits of tai chi chuan in improving sleep quality and cognitive function among older adults with sleep disorders and MCI. Design, Setting, and Participants This 2-arm, sham-controlled, assessor-masked randomized clinical trial was conducted at a university hospital in China between October 2022 and February 2024. Adults aged 60 to 75 years with sleep disorders and MCI were eligible. Data analysis was performed from February to May 2024. Intervention Participants were randomized in a 1:1 ratio to an experimental group (tai chi chuan and 1-Hz rTMS) or a sham group (tai chi chuan and sham rTMS). Each participant received 30 sessions of personalized rTMS targeting the right dorsolateral prefrontal cortex, and the sham group underwent the same procedure. The 2 groups received 30 sessions of 60 minutes of the 24-form simplified tai chi chuan, 5 times per week for 6 weeks. Main Outcomes and Measures The primary outcomes were subjective sleep quality assessed by the Pittsburgh Sleep Quality Index (PSQI), in which scores range from 0 to 21, with lower scores indicating a healthier sleep quality, and global cognitive function assessed by the Montreal Cognitive Assessment (MoCA), in which scores range from 0 to 30, with higher scores indicating less cognitive impairment. The secondary outcomes included measures of objective sleep actigraphy, anxiety and depression scales, and other cognitive subdomains. Assessments were performed at baseline, 6 weeks after the intervention, and at the 12-week follow-up. Results A total of 110 participants (mean [SD] age, 67.9 [4.6] years; 68 female [61.8%]) were randomized to the experimental group (n = 55) and the sham group (n = 55) and included in the intention-to-treat analysis. At 6 weeks after the intervention, compared with the sham group, the experimental group showed a lower PSQI score (between-group mean difference, -3.1 [95% CI, -4.2 to -2.1]; P < .001) and a higher MoCA score (between-group mean difference, 1.4 [95% CI, 0.7-2.1]; P < .001). The per-protocol dataset analyses and 12-week follow-up showed similar results. The generalized estimated equation model revealed an interaction effect between the PSQI score (mean difference, -2.1 [95% CI, -3.1 to -0.1]; P < .001) and the MoCA total score (mean difference, 0.9 [95% CI, 0.1-1.6]; P = .01). There were 7 nonserious, unrelated adverse events (experimental group: 2; sham group: 5) with no significant difference between the 2 groups. Conclusions and Relevance In this randomized clinical trial, the findings suggest that 1-Hz rTMS enhanced the clinical benefits of tai chi chuan in improving sleep quality and cognitive function among older adults with sleep disorders and MCI, which may be related to alterations in neural plasticity. These findings provide novel data on nonpharmacologic strategies for the rehabilitation of sleep disorders and may delay or even prevent MCI. Trial Registration Chinese Clinical Trial Registry Identifier: ChiCTR2200063274.
Collapse
Affiliation(s)
- Zhizhen Liu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Lin Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Linxin Bai
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhenxing Guo
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jiahui Gao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yongsheng Lin
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Yongjin Zhou
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Jinghui Lai
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Cognitive Rehabilitation, Fuzhou, Fujian, China
| | - Jing Tao
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Lidian Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Sharbafshaaer M, Cirillo G, Esposito F, Tedeschi G, Trojsi F. Harnessing Brain Plasticity: The Therapeutic Power of Repetitive Transcranial Magnetic Stimulation (rTMS) and Theta Burst Stimulation (TBS) in Neurotransmitter Modulation, Receptor Dynamics, and Neuroimaging for Neurological Innovations. Biomedicines 2024; 12:2506. [PMID: 39595072 PMCID: PMC11592033 DOI: 10.3390/biomedicines12112506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) methods have become exciting techniques for altering brain activity and improving synaptic plasticity, earning recognition as valuable non-medicine treatments for a wide range of neurological disorders. Among these methods, repetitive TMS (rTMS) and theta-burst stimulation (TBS) show significant promise in improving outcomes for adults with complex neurological and neurodegenerative conditions, such as Alzheimer's disease, stroke, Parkinson's disease, etc. However, optimizing their effects remains a challenge due to variability in how patients respond and a limited understanding of how these techniques interact with crucial neurotransmitter systems. This narrative review explores the mechanisms of rTMS and TBS, which enhance neuroplasticity and functional improvement. We specifically focus on their effects on GABAergic and glutamatergic pathways and how they interact with key receptors like N-Methyl-D-Aspartate (NMDA) and AMPA receptors, which play essential roles in processes like long-term potentiation (LTP) and long-term depression (LTD). Additionally, we investigate how rTMS and TBS impact neuroplasticity and functional connectivity, particularly concerning brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase receptor type B (TrkB). Here, we highlight the significant potential of this research to expand our understanding of neuroplasticity and better treatment outcomes for patients. Through clarifying the neurobiology mechanisms behind rTMS and TBS with neuroimaging findings, we aim to develop more effective, personalized treatment plans that effectively address the challenges posed by neurological disorders and ultimately enhance the quality of neurorehabilitation services and provide future directions for patients' care.
Collapse
Affiliation(s)
- Minoo Sharbafshaaer
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.E.); (G.T.); (F.T.)
| | - Giovanni Cirillo
- Division of Human Anatomy, Neuronal Networks Morphology & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy;
| | - Fabrizio Esposito
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.E.); (G.T.); (F.T.)
| | - Gioacchino Tedeschi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.E.); (G.T.); (F.T.)
| | - Francesca Trojsi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.E.); (G.T.); (F.T.)
| |
Collapse
|
3
|
Park AS, Thompson B. Non-invasive brain stimulation and vision rehabilitation: a clinical perspective. Clin Exp Optom 2024; 107:594-602. [PMID: 38772676 DOI: 10.1080/08164622.2024.2349565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/23/2024] Open
Abstract
Non-invasive brain stimulation techniques allow targeted modulation of brain regions and have emerged as a promising tool for vision rehabilitation. This review presents an overview of studies that have examined the use of non-invasive brain stimulation techniques for improving vision and visual functions. A description of the proposed neural mechanisms that underpin non-invasive brain stimulation effects is also provided. The clinical implications of non-invasive brain stimulation in vision rehabilitation are examined, including their safety, effectiveness, and potential applications in specific conditions such as amblyopia, post-stroke hemianopia, and central vision loss associated with age-related macular degeneration. Additionally, the future directions of research in this field are considered, including the need for larger and more rigorous clinical trials to validate the efficacy of these techniques. Overall, this review highlights the potential for brain stimulation techniques as a promising avenue for improving visual function in individuals with impaired vision and underscores the importance of continued research in this field.
Collapse
Affiliation(s)
- Adela Sy Park
- Centre for Eye & Vision Research, Hong Kong, Hong Kong
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| |
Collapse
|
4
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RAE, Stark CEL. Meta-analysis and open-source database for in vivo brain Magnetic Resonance spectroscopy in health and disease. Anal Biochem 2023; 676:115227. [PMID: 37423487 PMCID: PMC10561665 DOI: 10.1016/j.ab.2023.115227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Proton (1H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo. Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Alyssa L Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Jocelyn H Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
5
|
Caulfield KA, Fleischmann HH, George MS, McTeague LM. A transdiagnostic review of safety, efficacy, and parameter space in accelerated transcranial magnetic stimulation. J Psychiatr Res 2022; 152:384-396. [PMID: 35816982 PMCID: PMC10029148 DOI: 10.1016/j.jpsychires.2022.06.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Accelerated transcranial magnetic stimulation (aTMS) is an emerging delivery schedule of repetitive TMS (rTMS). TMS is "accelerated" by applying two or more stimulation sessions within a day. This three-part review comprehensively reports the safety/tolerability, efficacy, and stimulation parameters affecting response across disorders. METHODS We used the PubMed database to identify studies administering aTMS, which we defined as applying at least two rTMS sessions within one day. RESULTS Our targeted literature search identified 85 aTMS studies across 18 diagnostic and healthy control groups published from July 2001 to June 2022. Excluding overlapping populations, 63 studies delivered 43,873 aTMS sessions using low frequency, high frequency, and theta burst stimulation in 1543 participants. Regarding safety, aTMS studies had similar seizure and side effect incidence rates to those reported for once daily rTMS. One seizure was reported from aTMS (0.0023% of aTMS sessions, compared with 0.0075% in once daily rTMS). The most common side effects were acute headache (28.4%), fatigue (8.6%), and scalp discomfort (8.3%), with all others under 5%. We evaluated aTMS efficacy in 23 depression studies (the condition with the most studies), finding an average response rate of 42.4% and remission rate of 28.4% (range = 0-90.5% for both). Regarding parameters, aTMS studies ranged from 2 to 10 sessions per day over 2-30 treatment days, 10-640 min between sessions, and a total of 9-104 total accelerated TMS sessions per participant (including tapering sessions). Qualitatively, response rate tends to be higher with an increasing number of sessions per day, total sessions, and total pulses. DISCUSSION The literature to date suggests that aTMS is safe and well-tolerated across conditions. Taken together, these early studies suggest potential effectiveness even in highly treatment refractory conditions with the added potential to reduce patient burden while also expediting response time. Future studies are warranted to systematically investigate how key aTMS parameters affect treatment outcome and durability.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| | - Holly H Fleischmann
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Department of Psychology, University of Georgia, Athens, GA, USA
| | - Mark S George
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Lisa M McTeague
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
6
|
Rafique SA, Steeves JKE. Modulating intrinsic functional connectivity with visual cortex using low-frequency repetitive transcranial magnetic stimulation. Brain Behav 2022; 12:e2491. [PMID: 35049143 PMCID: PMC8865167 DOI: 10.1002/brb3.2491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Intrinsic network connectivity becomes altered in pathophysiology. Noninvasive brain stimulation can modulate pathological functional networks in an attempt to restore the inherent response. To determine its usefulness for visual-related disorders, we developed procedures investigating repetitive transcranial magnetic stimulation (rTMS) protocols targeting the visual cortex on modulating connectivity associated with the visual network and default mode network (DMN). METHODS We compared two low-frequency (1 Hz) rTMS protocols to the visual cortex (V1)-a single 20 min session and five successive 20 min sessions (accelerated/within-session rTMS)-using multi-echo resting-state functional magnetic resonance whole-brain imaging and resting-state functional connectivity (rsFC). We also explored the relationship between rsFC and rTMS-induced changes in key inhibitory and excitatory neurotransmitters, γ-aminobutyric acid (GABA) and glutamate. GABA (GABA+) and glutamate (Glx) concentrations were measured in vivo using magnetic resonance spectroscopy. RESULTS Acute disruption with a single rTMS session caused widespread connectivity reconfiguration with nodes of interest. Changes were not evident immediately post-rTMS but were observed at 1 h post-rTMS. Accelerated sessions resulted in weak alterations in connectivity, producing a relatively homeostatic response. Changes in GABA+ and Glx concentrations with network connectivity were dependent on the rTMS protocol. CONCLUSIONS This proof-of-concept study offers new perspectives to assess stimulation-induced neural processes involved in intrinsic functional connectivity and the potential for rTMS to modulate nodes interconnected with the visual cortex. The differential effects of single-session and accelerated rTMS on physiological markers are crucial for furthering the advancement of treatment modalities in visual cortex related disorders.
Collapse
Affiliation(s)
- Sara A Rafique
- Department of Psychology and Centre for Vision Research, York University, Toronto, Canada
| | - Jennifer K E Steeves
- Department of Psychology and Centre for Vision Research, York University, Toronto, Canada
| |
Collapse
|
7
|
Stoby KS, Rafique SA, Oeltzschner G, Steeves JKE. Continuous and intermittent theta burst stimulation to the visual cortex do not alter GABA and glutamate concentrations measured by magnetic resonance spectroscopy. Brain Behav 2022; 12:e2478. [PMID: 35029058 PMCID: PMC8865152 DOI: 10.1002/brb3.2478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Theta burst stimulation (TBS), a form of repetitive transcranial magnetic stimulation (rTMS), uses repeated high-frequency bursts to non-invasively modulate neural processes in the brain. An intermittent TBS (iTBS) protocol is generally considered "excitatory," while continuous TBS (cTBS) is considered "inhibitory." However, the majority of work that has led to these effects being associated with the respective protocols has been done in the motor cortex, and it is well established that TMS can have variable effects across the brain. OBJECTIVES AND METHOD We investigated the effects of iTBS and cTBS to the primary visual cortex (V1) on composite levels of gamma-aminobutyric acid + co-edited macromolecules (GABA+) and glutamate + glutamine (Glx) since these are key inhibitory and excitatory neurotransmitters, respectively. Participants received a single session of cTBS, iTBS, or sham TBS to V1. GABA+ and Glx were quantified in vivo at the stimulation site using spectral-edited proton magnetic resonance spectroscopy (1 H-MRS) at 3T. Baseline pre-TBS GABA+ and Glx levels were compared to immediate post-TBS and 1 h post-TBS levels. RESULTS There were no significant changes in GABA+ or Glx following either of the TBS conditions. Visual cortical excitability, measured using phosphene thresholds, remained unchanged following both cTBS and iTBS conditions. There was no relationship between excitability thresholds and GABA+ or Glx levels. However, TBS did alter the relationship between GABA+ and Glx for up to 1 h following stimulation. CONCLUSIONS These findings demonstrate that a single session of TBS to the visual cortex can be used without significant effects on the tonic levels of these key neurotransmitters; and add to our understanding that TBS has differential effects at visual, motor, and frontal cortices.
Collapse
Affiliation(s)
- Karlene S Stoby
- Centre for Vision Research and Department of Psychology, York University, Toronto, ON, Canada
| | - Sara A Rafique
- Centre for Vision Research and Department of Psychology, York University, Toronto, ON, Canada
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jennifer K E Steeves
- Centre for Vision Research and Department of Psychology, York University, Toronto, ON, Canada
| |
Collapse
|
8
|
Guo H, Xiao Y, Sun D, Yang J, Wang J, Wang H, Pan C, Li C, Zhao P, Zhang Y, Wu J, Zhang X, Wang F. Early-Stage Repetitive Transcranial Magnetic Stimulation Altered Posterior-Anterior Cerebrum Effective Connectivity in Methylazoxymethanol Acetate Rats. Front Neurosci 2021; 15:652715. [PMID: 34093113 PMCID: PMC8176023 DOI: 10.3389/fnins.2021.652715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
The aim of the current resting-state functional magnetic resonance imaging (fMRI) study was to investigate the potential mechanism of schizophrenia through the posterior-anterior cerebrum imbalance in methylazoxymethanol acetate (MAM) rats and to evaluate the effectiveness of repetitive transcranial magnetic stimulation (rTMS) as an early-stage intervention. The rats were divided into four groups: the MAM-sham group, vehicle-sham group, MAM-rTMS group, and vehicle-rTMS group. The rTMS treatment was targeted in the visual cortex (VC) in adolescent rats. Granger Causality Analysis (GCA) was used to evaluate the effective connectivity between regions of interest. Results demonstrated a critical right VC-nucleus accumbens (Acb)-orbitofrontal cortex (OFC) pathway in MAM rats; significant differences of effective connectivity (EC) were found between MAM-sham and vehicle-sham groups (from Acb shell to OFC: t = -2.553, p = 0.021), MAM-rTMS and MAM-sham groups (from VC to Acb core: t = -2.206, p = 0.043; from Acb core to OFC: t = 4.861, p < 0.001; from Acb shell to OFC: t = 4.025, p = 0.001), and MAM-rTMS and vehicle-rTMS groups (from VC to Acb core: t = -2.482, p = 0.025; from VC to Acb shell: t = -2.872, p = 0.012; from Acb core to OFC: t = 4.066, p = 0.001; from Acb shell to OFC: t = 3.458, p = 0.004) in the right hemisphere. Results of the early-stage rTMS intervention revealed that right nucleus accumbens played the role as a central hub, and VC was a potentially novel rTMS target region during adolescent schizophrenia. Moreover, the EC of right nucleus accumbens shell and orbitofrontal cortex was demonstrated to be a potential biomarker. To our knowledge, this was the first resting-state fMRI study using GCA to assess the deficits of a visual-reward neural pathway and the effectiveness of rTMS treatment in MAM rats. More randomized controlled trials in both animal models and schizophrenia patients are needed to further elucidate the disease characteristics.
Collapse
Affiliation(s)
- Huiling Guo
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Yao Xiao
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China.,Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dandan Sun
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingyu Yang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunyu Pan
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China.,School of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Chao Li
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pengfei Zhao
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, The Neuroscience and Mental Health Institute (NMHI), University of Alberta, Alberta, AB, Canada
| | - Jinfeng Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.,Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Rafique SA, Steeves JKE. Assessing differential effects of single and accelerated low-frequency rTMS to the visual cortex on GABA and glutamate concentrations. Brain Behav 2020; 10:e01845. [PMID: 32964685 PMCID: PMC7749615 DOI: 10.1002/brb3.1845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The application of repetitive transcranial magnetic stimulation (rTMS) for therapeutic use in visual-related disorders and its underlying mechanisms in the visual cortex is under-investigated. Additionally, there is little examination of rTMS adverse effects particularly with regards to visual and cognitive function. Neural plasticity is key in rehabilitation and recovery of function; thus, effective therapeutic strategies must be capable of modulating plasticity. Glutamate and γ-aminobutyric acid (GABA)-mediated changes in the balance between excitation and inhibition are prominent features in visual cortical plasticity. OBJECTIVES AND METHOD We investigated the effects of low-frequency (1 Hz) rTMS to the visual cortex on levels of neurotransmitters GABA and glutamate to determine the therapeutic potential of 1 Hz rTMS for visual-related disorders. Two rTMS regimes commonly used in clinical applications were investigated: participants received rTMS to the visual cortex either in a single 20-min session or five accelerated 20-min sessions (not previously investigated at the visual cortex). Proton (1H) magnetic resonance spectroscopy for in vivo quantification of GABA (assessed via GABA+) and glutamate (assessed via Glx) concentrations was performed pre- and post-rTMS. RESULTS GABA+ and Glx concentrations were unaltered following a single session of rTMS to the visual cortex. One day of accelerated rTMS significantly reduced GABA+ concentration for up to 24 hr, with levels returning to baseline by 1-week post-rTMS. Basic visual and cognitive function remained largely unchanged. CONCLUSION Accelerated 1 Hz rTMS to the visual cortex has greater potential for approaches targeting plasticity or in cases with altered GABAergic responses in visual disorders. Notably, these results provide preliminary insight into a critical window of plasticity with accelerated rTMS (e.g., 24 hr) in which adjunct therapies may offer better functional outcome. We describe detailed procedures to enable further exploration of these protocols.
Collapse
Affiliation(s)
- Sara A. Rafique
- Department of Psychology and Centre for Vision ResearchYork UniversityTorontoONCanada
| | | |
Collapse
|