1
|
Hudhud L, Hauksson J, Haney M, Sparrman T, Eriksson J, Lindgren L. Choline levels in the pregenual anterior cingulate cortex associated with unpleasant pain experience and anxiety. Neuroimage 2025; 310:121153. [PMID: 40101868 DOI: 10.1016/j.neuroimage.2025.121153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/04/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025] Open
Abstract
In vivo proton magnetic resonance spectroscopy is a non-invasive technique used to measure biochemical molecules such as choline, glutamate, glutamine, and γ-Aminobutyric acid (GABA), many of which are relevant to anxiety and pain. However, the relationship between these neurotransmitters/metabolites and their implications for anxiety and subjective experience of pain is not yet fully understood. The objective of this cross-sectional study was to investigate the association between anxiety and pain ratings with levels of total choline, glutamate and GABA in brain regions known to be involved in anxiety and emotional experience of pain, specifically pregenual anterior cingulate cortex (pgACC) and dorsal anterior cingulate cortex (dACC). The levels of the neurotransmitters/metabolites were measured using GABA-edited Mescher-Garwood PRESS for GABA measurements, with the OFF-sequence measurements for total choline (tCho) and Glx (combined glutamate + glutamine). The total choline (tCho) signal in our analysis included glycerophosphocholine (GPC) and phosphocholine (PC), which is consistent with standard practices in MRS studies. This approach ensures a robust estimation of tCho concentrations across participants. The study collected data from 38 participants (17 males and 21 females). The analysis revealed a significant correlation between anxiety ratings before a standardized pain provocation and the rated pain unpleasantness during the pain provocation. tCho correlated negatively with these parameters in pgACC. A linear regression analysis indicated that tCho levels in pgACC have a significant negative association with anxiety and perceived pain when controlling for age, depressive symptoms, and alcohol and tobacco intake. We also found that sex significantly moderates the relationship between pgACC choline levels and pain unpleasantness. The study suggests that levels of choline, an essential precursor of acetylcholine, are associated with anxiety and perceived pain. These levels may influence how Glx and GABA contribute to affective pain experiences by modulating the balance between excitatory and inhibitory signals. However, future research is needed to identify the mechanisms involved. Furthermore, the study indicates that sex is a significant factor in this relationship, with lower choline levels being associated with higher pain ratings in females but not in males. This highlights the significance of addressing sex as a biological factor in pain research to better understand the different responses to treatments and to facilitate the development of more effective interventions in the future.
Collapse
Affiliation(s)
- Lina Hudhud
- Department of Nursing, Umeå University, 901 87, Umeå, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, 901 87, Umeå, Sweden.
| | - Jón Hauksson
- Department of Diagnostics and Intervention, Umeå University, 901 87, Umeå, Sweden.
| | - Michael Haney
- Department of Anaesthesiology and Intensive Care Medicine, Diagnostics and Intervention, Umeå University, 901 87, Umeå, Sweden.
| | - Tobias Sparrman
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden.
| | - Johan Eriksson
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87, Umeå, Sweden; Department of Psychology, Umeå University, 901 87, Umeå, Sweden.
| | - Lenita Lindgren
- Department of Nursing, Umeå University, 901 87, Umeå, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, 901 87, Umeå, Sweden; Department of Anaesthesiology and Intensive Care Medicine, Diagnostics and Intervention, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
2
|
Yang J, Yue K, Sun J, Pan C, Wu X, Cheng Y, Wu X, Shi H. Altered functional network topology properties to detect anxiety and depression caused by Crohn's disease and disease severity. Brain Res Bull 2025; 221:111187. [PMID: 39746522 DOI: 10.1016/j.brainresbull.2024.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/04/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE Here we investigated changes in topological properties of functional brain networks among individuals with Crohn's disease (CD) and to determine whether these changes are related to CD severity, as well as CD-associated anxiety and depression, which are regulated by the brain-gut axis mechanism. METHODS In total, 31 individuals with CD, 21 with irritable bowel syndrome (IBS), and 20 healthy controls underwent functional magnetic resonance imaging. Individuals with CD or IBS were also evaluated using the Hospital Anxiety and Depression Scale-Anxiety (HADS-A) and Depression (HADS-D) scales, as well as the simple endoscopic score for CD (SES-CD). Graph theory-based methods were applied to calculate the topological properties of brain networks, and comparisons among the three groups were performed using one-way analysis of variance. Partial correlation analysis was used to assess correlations among these properties and HADS-A, HADS-D, and SES-CD scores. RESULTS In the CD group, altered global topological properties were identified, and altered local topological properties were observed in 13 brain regions. The functional connectivity (FC) between the default mode network and visual network was increased, and the FC in the limbic system was decreased. In the CD group, local topological properties in the amygdala and precuneus were negatively correlated with HADS-A scores, and local topological properties in the superior occipital gyrus were positively correlated with SES-CD scores. CONCLUSION Both global and regional topologies of brain networks were impaired in individuals with CD, which were correlated with clinical scores, suggesting that these values could serve as neuroimaging metrics reflecting the degree of anxiety caused by CD and CD severity.
Collapse
Affiliation(s)
- Jiaxing Yang
- Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Meddical Center, Nanjing Medical University, No. 68 Gehu Middle Road, Changzhou, Jiangsu Province 213000, China
| | - Kechen Yue
- Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Meddical Center, Nanjing Medical University, No. 68 Gehu Middle Road, Changzhou, Jiangsu Province 213000, China
| | - Jingwen Sun
- Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Meddical Center, Nanjing Medical University, No. 68 Gehu Middle Road, Changzhou, Jiangsu Province 213000, China
| | - Changjie Pan
- Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Meddical Center, Nanjing Medical University, No. 68 Gehu Middle Road, Changzhou, Jiangsu Province 213000, China
| | - Xintong Wu
- Department of gastroenterology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Meddical Center, Nanjing Medical University, No. 68 Gehu Middle Road, Changzhou, Jiangsu Province 213000, China
| | - Yongjun Cheng
- MR Research, Philips Healthcare, Shanghai 200072, China
| | - Xiaomeng Wu
- MR Research, Philips Healthcare, Shanghai 200072, China
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Meddical Center, Nanjing Medical University, No. 68 Gehu Middle Road, Changzhou, Jiangsu Province 213000, China.
| |
Collapse
|
3
|
Yue KC, Zhu YY, Sun JW, Wu XT, Liu WJ, Shi HF. Imaging characteristics of brain microstructure and cerebral perfusion in Crohn's disease patients with anxiety: A prospective comparative study. World J Gastroenterol 2025; 31:99014. [PMID: 39877713 PMCID: PMC11718645 DOI: 10.3748/wjg.v31.i4.99014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Anxiety is a common comorbidity in patients with Crohn's disease (CD). Data on the imaging characteristics of brain microstructure and cerebral perfusion in CD with anxiety are limited. AIM To compare the imaging characteristics of brain microstructure and cerebral perfusion among CD patients with or without anxiety and healthy individuals. METHODS This prospective comparative study enrolled consecutive patients with active CD and healthy individuals who visited the study hospital between January 2022 and January 2023. Anxiety was measured using the Hospital Anxiety and Depression Scale-Anxiety. The imaging characteristics of brain microstructure and cerebral perfusion were measured by diffusion kurtosis imaging and intravoxel incoherent motion. RESULTS A total of 57 participants were enrolled. Among the patients with active CD, 16 had anxiety. Compared with healthy individuals, patients with active CD demonstrated significantly lower radial kurtosis values in the right cerebellar region 6, lower axial kurtosis (AK) values in the right insula, left superior temporal gyrus, and right thalamus, and higher slow and fast apparent diffusion coefficients (ADCslow and ADCfast) in the bilateral frontal lobe, bilateral temporal lobe, and bilateral insular lobe (all P < 0.05). Compared with patients with CD without anxiety, patients with CD and anxiety exhibited significantly higher ADCslow values in the left insular lobe and lower AK values in the right insula and right anterior cuneus (all P < 0.05). CONCLUSION There are variations in brain microstructure and perfusion among CD patients with/without anxiety and healthy individuals, suggesting potential use in assessing anxiety-related changes in active CD.
Collapse
Affiliation(s)
- Ke-Cen Yue
- Dalian Medical University, Dalian 116044, Liaoning Province, China
- Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213000, Jiangsu Province, China
| | - Ying-Yin Zhu
- Department of Radiology, Suzhou 100 Hospital, Suzhou 215000, Jiangsu Province, China
| | - Jing-Wen Sun
- Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213000, Jiangsu Province, China
| | - Xin-Tong Wu
- Dalian Medical University, Dalian 116044, Liaoning Province, China
- Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213000, Jiangsu Province, China
| | - Wen-Jia Liu
- Department of Gastroenterology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213000, Jiangsu Province, China
| | - Hai-Feng Shi
- Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213000, Jiangsu Province, China
| |
Collapse
|
4
|
Zhang RN, Wang YD, Wang HJ, Ke YQ, Shen XD, Huang L, Lin JJ, He WT, Zhao C, Li ZL, Mao R, Wang YJ, Yang G, Li XH. Identification of neural alterations in patients with Crohn's disease with a novel multiparametric brain MRI-based radiomics model. Insights Imaging 2024; 15:289. [PMID: 39613905 DOI: 10.1186/s13244-024-01859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024] Open
Abstract
OBJECTIVES Gut-brain axis dysfunction has emerged as a key contributor to the pathogenesis of Crohn's disease (CD). The elucidation of neural alterations may provide novel insights into its management. We aimed to develop a multiparameter brain MRI-based radiomics model (RM) for characterizing neural alterations in CD patients and to interpret these alterations using multiomics traits. METHODS This prospective study enrolled 230 CD patients and 46 healthy controls (HCs). Participants voluntarily underwent brain MRI and psychological assessment (n = 155), blood metabolomics analysis (n = 260), and/or fecal 16S rRNA sequencing (n = 182). The RM was developed using 13 features selected from 13,870 first-order features extracted from multiparameter brain MRI in training cohort (CD, n = 75; HCs, n = 32) and validated in test cohort (CD, n = 34; HCs, n = 14). Multiomics data (including gut microbiomics, blood metabolomics, and brain radiomics) were compared between CD patients and HCs. RESULTS In the training cohort, area under the receiver operating characteristic curve (AUC) of RM for distinguishing CD patients from HCs was 0.991 (95% confidence interval (CI), 0.975-1.000). In test cohort, RM showed an AUC of 0.956 (95% CI, 0.881-1.000). CD-enriched blood metabolites such as triacylglycerol (TAG) exhibited significant correlations with both brain features detected by RM and CD-enriched microbiota (e.g., Veillonella). One notable correlation was found between Veillonella and Ctx-Lh-Middle-Temporal-CBF-p90 (r = 0.41). Mediation analysis further revealed that dysbiosis, such as of Veillonella, may regulate the blood flow in the middle temporal cortex through TAG. CONCLUSION We developed a multiparameter MRI-based RM that characterized the neural alterations of CD patients, and multiomics data offer potential evidence to support the validity of our model. Our study may offer clues to help provide potential therapeutic targets. CRITICAL RELEVANCE STATEMENT Our brain-gut axis study developed a novel model using multiparameter MRI and radiomics to characterize brain changes in patients with Crohn's disease. We validated this model's effectiveness using multiomics data, making it a potential biomarker for better patient management. KEY POINTS Utilizing multiparametric MRI and radiomics techniques could unveil Crohn's disease's neurophenotype. The neurophenotype radiomics model is interpreted using multiomics data. This model may serve as a novel biomarker for Crohn's disease management.
Collapse
Affiliation(s)
- Ruo-Nan Zhang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Yang-di Wang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Hai-Jie Wang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Dongchuan Road, Minhang District, Shanghai, 200241, People's Republic of China
| | - Yao-Qi Ke
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Xiao-di Shen
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Li Huang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Jin-Jiang Lin
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Wei-Tao He
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Chen Zhao
- MR Research Collaboration Team, Siemens Healthineers, Guangzhou, People's Republic of China
| | - Zhou-Lei Li
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Ye-Jun Wang
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Medical School, Shenzhen, 518060, People's Republic of China
- Department of Cell Biology and Genetics, College of Basic Medicine, Shenzhen University Medical School, Shenzhen, 518060, People's Republic of China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Dongchuan Road, Minhang District, Shanghai, 200241, People's Republic of China.
| | - Xue-Hua Li
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
5
|
Yang L, Zhang L, Liu Y, Liu J, Li K, Cai J. The different impacts of pain-related negative emotion and trait negative emotion on brain function in patients with inflammatory bowel disease. Sci Rep 2024; 14:23897. [PMID: 39396081 PMCID: PMC11470934 DOI: 10.1038/s41598-024-75237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024] Open
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic, non-specific intestinal diseases that could comorbid with varieties of negative emotional constructs, including pain-related negative emotions and trait negative emotions; however, the link between brain functions and different dimensions of negative emotions remains largely unknown. Ninety-eight patients with IBD and forty-six healthy subjects were scanned using a 3.0-T functional magnetic resonance imaging scanner. The amplitudes of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and degree centrality (DC) were used to assess resting-state brain activity. Partial least squares (PLS) correlation was employed to assess the relationship among abnormal brain activities, pain-related and trait negative emotions. Compared to controls, patients with IBD exhibited higher values of ALFF in the right anterior cingulate cortex (ACC), lower values of ALFF in the left postcentral gyrus, and higher values of DC in the bilateral ACC. Multivariate PLS correlation analysis revealed the brain scores of the ACC were correlated with pain-related negative emotions, the brain salience in the left postcentral gyrus was associated with the higher-order trait depression. These findings can enhance our comprehension of how pain-related negative emotion and trait negative emotion affect the brains of patients with IBD in distinct ways.
Collapse
Affiliation(s)
- Ling Yang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Yuzhong District, Chongqing, 400000, China
- Radiology Department, Chongqing General Hospital, Chongqing University, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
- Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Lingqin Zhang
- Radiology Department, Chongqing General Hospital, Chongqing University, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Yan Liu
- Gastroenterology Department, Chong Qing General Hospital, Chongqing University, Chongqing, China
| | - Jixin Liu
- School of Life Science and Technology, Center for Brain Imaging, Xidian University, Xi'an, China
| | - Kang Li
- Radiology Department, Chongqing General Hospital, Chongqing University, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China.
| | - Jinhua Cai
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Yuzhong District, Chongqing, 400000, China.
- Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China.
| |
Collapse
|
6
|
Caspani G, Ruffell SGD, Tsang W, Netzband N, Rohani-Shukla C, Swann JR, Jefferies WA. Mind over matter: the microbial mindscapes of psychedelics and the gut-brain axis. Pharmacol Res 2024; 207:107338. [PMID: 39111558 DOI: 10.1016/j.phrs.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Psychedelics have emerged as promising therapeutics for several psychiatric disorders. Hypotheses around their mechanisms have revolved around their partial agonism at the serotonin 2 A receptor, leading to enhanced neuroplasticity and brain connectivity changes that underlie positive mindset shifts. However, these accounts fail to recognise that the gut microbiota, acting via the gut-brain axis, may also have a role in mediating the positive effects of psychedelics on behaviour. In this review, we present existing evidence that the composition of the gut microbiota may be responsive to psychedelic drugs, and in turn, that the effect of psychedelics could be modulated by microbial metabolism. We discuss various alternative mechanistic models and emphasize the importance of incorporating hypotheses that address the contributions of the microbiome in future research. Awareness of the microbial contribution to psychedelic action has the potential to significantly shape clinical practice, for example, by allowing personalised psychedelic therapies based on the heterogeneity of the gut microbiota.
Collapse
Affiliation(s)
- Giorgia Caspani
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, East Mall, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| | - Simon G D Ruffell
- Psychae Institute, Melbourne, Australia; School of Population and Global Health, University of Melbourne, 207 Bouverie St, Carlton, VIC 3053, Australia
| | - WaiFung Tsang
- Institute of Psychiatry, Psychology & Neuroscience, King'sCollege London, Department of Psychology, De Crespigny Park, London SE5 8AF, UK
| | - Nigel Netzband
- University of West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Cyrus Rohani-Shukla
- Centre for Psychedelic Research, Imperial College London, Hammersmith Hospital, Du Cane Rd, London W12 0HS, UK
| | - Jonathan R Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, 12 University Rd, Southampton SO17 1BJ, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, East Mall, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
7
|
Kong N, Zhou F, Zhang F, Gao C, Wu L, Guo Y, Gao Y, Lin J, Xu M. Morphological and regional spontaneous functional aberrations in the brain associated with Crohn's disease: a systematic review and coordinate-based meta-analyses. Cereb Cortex 2024; 34:bhae116. [PMID: 38566507 DOI: 10.1093/cercor/bhae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Crohn's disease is an acknowledged "brain-gut" disorder with unclear physiopathology. This study aims to identify potential neuroimaging biomarkers of Crohn's disease. Gray matter volume, cortical thickness, amplitude of low-frequency fluctuations, and regional homogeneity were selected as indices of interest and subjected to analyses using both activation likelihood estimation and seed-based d mapping with permutation of subject images. In comparison to healthy controls, Crohn's disease patients in remission exhibited decreased gray matter volume in the medial frontal gyrus and concurrently increased regional homogeneity. Furthermore, gray matter volume reduction in the medial superior frontal gyrus and anterior cingulate/paracingulate gyri, decreased regional homogeneity in the median cingulate/paracingulate gyri, superior frontal gyrus, paracentral lobule, and insula were observed. The gray matter changes of medial frontal gyrus were confirmed through both methods: decreased gray matter volume of medial frontal gyrus and medial superior frontal gyrus were identified by activation likelihood estimation and seed-based d mapping with permutation of subject images, respectively. The meta-regression analyses showed a positive correlation between regional homogeneity alterations and patient age in the supplementary motor area and a negative correlation between gray matter volume changes and patients' anxiety scores in the medial superior frontal gyrus. These anomalies may be associated with clinical manifestations including abdominal pain, psychiatric disorders, and possibly reflective of compensatory mechanisms.
Collapse
Affiliation(s)
- Ning Kong
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Feini Zhou
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Fan Zhang
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Chen Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Linyu Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yifan Guo
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yiyuan Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jiangnan Lin
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Maosheng Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| |
Collapse
|
8
|
Huang M, Ma H, Zou Y, Fan W, Tu L, Zhao J, Ma G, Diao N, Li X, Han P, Zhu L, Shi H. Structural alterations of brain in different disease states of Crohn's disease: Results of a cross-sectional study in a Chinese hospital. Heliyon 2024; 10:e27446. [PMID: 38510022 PMCID: PMC10951496 DOI: 10.1016/j.heliyon.2024.e27446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Rationale and objectives To investigate alterations in the brain structure in patients with Crohn's disease in activity (CD-A) and in remission (CD-R) compared to healthy controls (HCs) and explore the relationship between gray matter volume (GMV) and psychological disorders. Materials and methods A total of 127 CD patients (62 CD-A, 65 CD-R) and 92 healthy controls (HCs) were enrolled and analyzed in this study. The Crohn's disease activity index (CDAI) was used as the grouping criteria. Voxel-based morphometry (VBM) was applied to investigate gray matter volume (GMV), white matter volume (WMV) and global cerebrospinal fluid (CSF) volume alterations. Pearson correlation analysis was used to evaluate the relationships. Results The CSF volume was negatively correlated with the disease duration in CD-R. Increased GMV of CD was observed in the parahippocampal gyrus, precentral gyrus, precuneous cortex, and subcallosal cortex, decreased was located in the occipital pole, precentral gyrus, inferior temporal gyrus, middle frontal gyrus, angular gyrus, frontal pole, lateral occipital cortex, and lingual gyrus. The GMV in the right temporal pole, left precuneous cortex, and left cingulate gyrus had a positive correlation with erythrocyte and hemoglobin in CD groups. The GMV in the right frontal pole, right postcentral gyrus, and left cingulate gyrus had a negative correlation with somatization in the CD groups. The GMV in the right temporal pole had a negative correlation with psychoticism and other in the CD groups. The GMV in the left cingulate gyrus was positive with bowel symptoms and systemic symptoms in the CD groups. Conclusion Alterations of GMV in CD-A and CD-R and associated correlation with psychological disorders may provide evidence for possible neuro-mechanisms of CD with psychological disorders.
Collapse
Affiliation(s)
- Mengting Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Hui Ma
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yan Zou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Guina Ma
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Nan Diao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xin Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Liangru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heshui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| |
Collapse
|
9
|
Huang M, Ma G, Zou Y, Ma H, Fan W, Li X, Zhu L, Han P, Wang H, Shi H. A potential brain functional biomarker distinguishing patients with Crohn's disease with different disease stages: a resting-state fMRI study. Front Neurosci 2024; 18:1361320. [PMID: 38500485 PMCID: PMC10945013 DOI: 10.3389/fnins.2024.1361320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Background The previous studies have demonstrated that patients with Crohn's disease in remission (CD-R) have abnormal alterations in brain function. However, whether brain function changes in patients with Crohn's disease in activity (CD-A) and the relationship with CD-R are still unclear. In this study, we aimed to investigate whether the different levels of disease activity may differentially affect the brain function and to find the brain functional biomarker distinguishing patients with different disease stages by measuring the amplitude of low frequency fluctuations (ALFF). Methods 121 patients with CD and 91 healthy controls (HCs) were recruited. The clinical and psychological assessment of participants were collected. The criteria for the disease activity were the Crohn's disease activity index (CDAI) scores. CD-R refers to CD patients in remission which the CDAI score is less than 150. Conversely, CD-A refers to CD patients in activity which the CDAI score is ≥150. The ALFF was compared among three groups by performing one-way analysis of variance, followed by a post hoc two-sample t-test. Differences among the groups were selected as seeds for functional connectivity analyses. We also investigated the correlation among clinical, psychological scores and ALFF. Binary logistic regression analysis was used to examine the unique contribution of the ALFF characteristics of the disease stages. Results There were widespread differences of ALFF values among the 3 groups, which included left frontal pole (FP_L), right supramarginal gyrus (SG_R), left angular gyrus (AG_L), right cingulate gyrus (CG_R), right intracalcarine cortex (IC_R), right parahippocampal gyrus (PG_R), right lingual gyrus (LG_R), right precuneous cortex (PC_R), left occipital fusiform gyrus (OFG_L). Significant brain regions showing the functional connections (FC) increased in FP_L, SG_R, PC_R and OFG_L between CD-A and HCs. The erythrocyte sedimentation rate had a negative correlation with the ALFF values in PC_R in the patients with CD. The phobic anxiety values had a negative correlation with the ALFF values in OFG_L. The psychoticism values had a negative correlation with ALFF values in the IC_R. And the hostility values had a positive correlation with the ALFF values in CG_R. Significant brain regions showing the FC increased in FP_L, SG_R, CG_R, PG_R, LG_R and OFG_L between CD-R and HCs. In binary logistic regression models, the LG_R (beta = 5.138, p = 0.031), PC_R (beta = 1.876, p = 0.002) and OFG_L (beta = 3.937, p = 0.044) was disease stages predictors. Conclusion The results indicated the significance of the altered brain activity in the different disease stages of CD. Therefore, these findings present a potential identify neuroimaging-based brain functional biomarker in CD. Additionally, the study provides a better understanding of the pathophysiology of CD.
Collapse
Affiliation(s)
- Mengting Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Guina Ma
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yan Zou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Hui Ma
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xin Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Liangru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Huan Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heshui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
10
|
Yang L, He P, Zhang L, Li K. Altered resting-state brain functional activities and networks in Crohn's disease: a systematic review. Front Neurosci 2024; 18:1319359. [PMID: 38332859 PMCID: PMC10851432 DOI: 10.3389/fnins.2024.1319359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Background Crohn's disease (CD) is a non-specific chronic inflammatory disease of the gastrointestinal tract and is a phenotype of inflammatory bowel disease (IBD). The current study sought to compile the resting-state functional differences in the brain between CD patients and healthy controls. Methods The online databases PubMed, Web of Science Core, and EMBASE were used to find the published neuroimage studies. The search period was from the beginning through December 15, 2023. The predetermined inclusion and exclusion criteria allowed for the identification of the studies. The studies were assembled by two impartial reviewers, who also assessed their quality and bias. Results This review comprised 16 resting-state fMRI studies in total. The included studies generally had modest levels of bias. According to the research, emotional processing and pain processing were largely linked to increased or decreased brain activity in patients with CD. The DMN, CEN, and limbic systems may have abnormalities in patients with CD, according to research on brain networks. Several brain regions showed functional changes in the active CD group compared to the inactive CD group and the healthy control group, respectively. The abnormalities in brain areas were linked to changes in mood fluctuations (anxiety, melancholy) in patients with CD. Conclusion Functional neuroimaging helps provide a better understanding of the underlying neuropathological processes in patients with CD. In this review, we summarize as follows: First, these findings indicate alterations in brain function in patients with CD, specifically affecting brain regions associated with pain, emotion, cognition, and visceral sensation; second, disease activity may have an impact on brain functions in patients with CD; and third, psychological factors may be associated with altered brain functions in patients with CD.
Collapse
Affiliation(s)
- Ling Yang
- Radiology Department, Chongqing General Hospital, Chongqing, China
- Department of Radiology Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Peipei He
- Radiology Department, Chongqing General Hospital, Chongqing, China
| | - Lingqin Zhang
- Radiology Department, Chongqing General Hospital, Chongqing, China
| | - Kang Li
- Radiology Department, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
11
|
Thapaliya G, Eldeghaidy S, Radford SJ, Francis ST, Moran GW. An examination of resting-state functional connectivity in patients with active Crohn's disease. Front Neurosci 2023; 17:1265815. [PMID: 38125406 PMCID: PMC10731262 DOI: 10.3389/fnins.2023.1265815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Background Alterations in resting state functional connectivity (rs-FC) in Crohn's Disease (CD) have been documented in default mode network (DMN) and frontal parietal network (FPN) areas, visual, cerebellar, salience and attention resting-state-networks (RSNs), constituting a CD specific neural phenotype. To date, most studies are in patients in remission, with limited studies in active disease. Methods Twenty five active CD cases and 25 age-, BMI- and gender-matched healthy controls (HC) were recruited to a resting-state-functional Magnetic Resonance Imaging (rs-fMRI) study. Active disease was defined as C-reactive protein>5 mg/dL, faecal calprotectin>250 μg/g, or through ileocolonoscopy or MRE. rs-fMRI data were analysed using independent component analysis (ICA) and dual regression. Differences in RSNs between HCs and active CD were assessed, and rs-FC was associated with disease duration and abdominal pain. Results Increased connectivity in the FPN (fusiform gyrus, thalamus, caudate, posterior cingulate cortex, postcentral gyrus) and visual RSN (orbital frontal cortex) were observed in CD versus HC. Decreased activity was observed in the salience network (cerebellum, postcentral gyrus), DMN (parahippocampal gyrus, cerebellum), and cerebellar network (occipital fusiform gyrus, cerebellum) in CD versus HCs. Greater abdominal pain scores were associated with lower connectivity in the precuneus (visual network) and parietal operculum (salience network), and higher connectivity in the cerebellum (frontal network). Greater disease duration was associated with greater connectivity in the middle temporal gyrus and planum temporale (visual network). Conclusion Alterations in rs-FC in active CD in RSNs implicated in cognition, attention, emotion, and pain may represent neural correlates of chronic systemic inflammation, abdominal pain, disease duration, and severity.
Collapse
Affiliation(s)
- Gita Thapaliya
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sally Eldeghaidy
- Division of Food, Nutrition and Dietetics, School of Biosciences, The University of Nottingham, Loughborough, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Shellie J. Radford
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Susan T. Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Gordon William Moran
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and School of Medicine, The University of Nottingham, Nottingham, United Kingdom
- Translational Medical Sciences Unit, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
12
|
Schulz A, Welsch SK, Etringer S, Hansen G, Milbert L, Schneider J, Taddei G, Gomez Bravo R, Lygidakis C, van Dyck Z, Lutz A, Wilmes P, Vögele C. Lower gastric sensitivity in quiescent inflammatory bowel disease than in irritable bowel syndrome. Physiol Behav 2023; 270:114293. [PMID: 37468056 DOI: 10.1016/j.physbeh.2023.114293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/18/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE Visceral hypersensitivity is considered a key symptom in inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), both of which seriously affect health-related quality of life (HrQoL). Previous findings are mostly based on invasive procedures that may interfere with the assessment of visceral perception. The current study, therefore, investigates whether IBD and IBS are characterized by altered perception of 'natural' gastric distensions ('interoception'). METHODS Twenty IBD patients in remission (13 Crohn's disease, 7 ulcerative colitis), 12 IBS patients, and 20/12 matched healthy control (HC) individuals, respectively, underwent the water load test, in which they could drink ad libitum until the subjective thresholds of satiation (stage 1) and fullness (stage 2) were reached. Gastric motility was assessed using electrogastrography. RESULTS IBD patients drank significantly more water until satiation than IBS patients, whereas no differences between patients and HC groups were observed. Electrogastrographic patterns were comparable between groups, suggesting no pathologies in gastric motility in IBD or IBS. The amount of water consumed until satiation negatively correlated with HrQoL related to bowel symptoms in IBD patients, but was positively associated with emotional well-being in IBS patients. CONCLUSION Our findings implicate relative gastric hypersensitivity in IBS, and relative hyposensitivity in IBD patients, which are both related to specific HrQoL aspects.
Collapse
Affiliation(s)
- André Schulz
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Institute for Cognitive and Affective Neuroscience, Trier University, Trier, Germany.
| | - Sina-Katharina Welsch
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sarah Etringer
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Greta Hansen
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Léa Milbert
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jochen Schneider
- Saarland University Medical Center, Department of Internal Medicine II, Homburg/Saar, Germany; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Gastroenterology, Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - Gennaro Taddei
- Department of Gastroenterology, Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - Raquel Gomez Bravo
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Charilaos Lygidakis
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Zoé van Dyck
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Annika Lutz
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Claus Vögele
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
13
|
Kornelsen J, McIver T, Uddin MN, Figley CR, Marrie RA, Patel R, Fisk JD, Carter S, Graff L, Mazerolle EL, Bernstein CN. Altered voxel-based and surface-based morphometry in inflammatory bowel disease. Brain Res Bull 2023; 203:110771. [PMID: 37797750 DOI: 10.1016/j.brainresbull.2023.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is characterized by inflammation of the gastrointestinal tract and is a disorder of the brain-gut axis. Neuroimaging studies of brain function and structure have helped better understand the relationships between the brain, gut, and comorbidity in IBD. Studies of brain structure have primarily employed voxel-based morphometry to measure grey matter volume and surface-based morphometry to measure cortical thickness. Far fewer studies have employed other surface-based morphometry metrics such as gyrification, cortical complexity, and sulcal depth. In this study, brain structure differences between 72 adults with IBD and 90 healthy controls were assessed using all five metrics. Significant differences were found for cortical thickness with the IBD group showing extensive left-lateralized thinning, and for cortical complexity with the IBD group showing greater complexity in the left fusiform and right posterior cingulate. No significant differences were found in grey matter volume, gyrification, or sulcal depth. Within the IBD group, a post hoc analysis identified that disease duration is associated with cortical complexity of the right supramarginal gyrus, albeit with a more lenient threshold applied.
Collapse
Affiliation(s)
- Jennifer Kornelsen
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada; University of Manitoba IBD Clinical and Research Centre, Winnipeg, MB, Canada.
| | - Theresa McIver
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; University of Manitoba IBD Clinical and Research Centre, Winnipeg, MB, Canada; Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Md Nasir Uddin
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Department of Neurology, School of Medicine & Dentistry, University of Rochester, Rochester, NY, United States; Department of Biomedical Engineering, Hajim School of Engineering & Applied Sciences, University of Rochester, Rochester, NY, United States
| | - Chase R Figley
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
| | - Ruth Ann Marrie
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ronak Patel
- Department of Clinical Health Psychology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - John D Fisk
- Nova Scotia Health and Departments of Psychiatry, Psychology & Neuroscience, and Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sean Carter
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lesley Graff
- Department of Clinical Health Psychology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Erin L Mazerolle
- Department of Psychology, Computer Science, and Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Charles N Bernstein
- University of Manitoba IBD Clinical and Research Centre, Winnipeg, MB, Canada; Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
14
|
Du H, Lin R, Xiao S, Zhao Y, Wu M, Chen W, Cai W, Wei N, Gong G, Huang K, Zhang F, Chen H. Improved Sleep Affects Epigastric Pain in Functional Dyspepsia by Reducing the Levels of Inflammatory Mediators. Dig Dis 2023; 41:835-844. [PMID: 37607491 DOI: 10.1159/000531748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/20/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION The pathogenesis of epigastric pain in functional dyspepsia (FD) is complex. The study aims to explore the effect of sleep improvement on this symptom. METHODS In total, 120 patients with FD-associated epigastric pain and insomnia were randomly divided into experimental and control groups using the envelope method. After applying the exclusion criteria, 107 patients were enrolled in the experimental (56 patients) and control (51 patients) groups. Insomnia was graded according to the Pittsburgh Sleep Quality Index (PSQI). In the experimental group, eszopiclone 3 mg, eszopiclone 3 mg + estazolam 1 mg, and eszopiclone 3 mg + estazolam 2 mg were given to patients with mild, moderate, and severe insomnia, respectively. In the control group, patients were given 1, 2, or 3 tablets of vitamin B complex. Patient sleep quality was monitored with Sleepthing. Epigastric pain was evaluated with a Numeric Rating Scale. The serum levels of IL-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent assay. Pain scores, sleep parameters, and serum levels of inflammatory mediators were compared before and after treatment. RESULTS After treatment, the pain scores, sleep parameters, and TNF-α and IL-6 levels in the experimental group were significantly lower than those in the control group (p < 0.05). PSQI insomnia scores were significantly associated with pain scores, IL-6, and TNF-α (p < 0.05) but not in IL-8 and IL-1β levels (p > 0.05) among the three groups. CONCLUSIONS Improving sleep with eszopiclone and/or estazolam alleviates FD-associated epigastric pain, possibly by inhibiting related downstream transmission pathways and reducing the release of inflammatory mediators.
Collapse
Affiliation(s)
- Huang Du
- Department of Gastroenterology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming City, China
| | - Rongpan Lin
- Department of Gastroenterology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming City, China
| | - Shuping Xiao
- Department of Gastroenterology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming City, China
| | - Yu Zhao
- Department of Gastroenterology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming City, China
| | - Mingxia Wu
- Department of Gastroenterology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming City, China
| | - Wenhua Chen
- Department of Gastroenterology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming City, China
| | - Wangfeng Cai
- Department of Gastroenterology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming City, China
| | - Nating Wei
- Department of Gastroenterology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming City, China
| | - Guohua Gong
- Department of Gastroenterology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming City, China
| | - Kangming Huang
- Department of Gastroenterology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming City, China
| | - Fajing Zhang
- Department of Gastroenterology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming City, China
| | - Hongbin Chen
- Department of Gastroenterology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming City, China
| |
Collapse
|
15
|
Wang Y, Zhang R, Mao R, Li X. Inflammatory bowel disease cross-sectional imaging: What's new? United European Gastroenterol J 2022; 10:1179-1193. [PMID: 36461914 PMCID: PMC9752287 DOI: 10.1002/ueg2.12343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/13/2022] [Indexed: 12/07/2022] Open
Abstract
Cross-sectional imaging-ultrasonography, computed tomography enterography, and magnetic resonance enterography-is a routine and indispensable tool for patients with Crohn's disease (CD) that helps to detect or monitor disease characteristics before, during, and after CD treatment. New emerging radiological technologies may have further clinical applications in the management of CD. In this review article, we focus on the latest developments in cross-sectional imaging in CD research, including its role in intra- and extra-luminal lesion detection, intestinal inflammation and fibrosis grading, therapeutic response assessment and outcome prediction, postoperative recurrence detection and prediction, and the gut-brain axis.
Collapse
Affiliation(s)
- Yang‐di Wang
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPeople's Republic of China
| | - Ruo‐nan Zhang
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPeople's Republic of China
| | - Ren Mao
- Department of GastroenterologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPeople's Republic of China
| | - Xue‐hua Li
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
16
|
Thapaliya G, Eldeghaidy S, Asghar M, McGing J, Radford S, Francis S, Moran GW. The relationship between Central Nervous System morphometry changes and key symptoms in Crohn’s disease. Brain Imaging Behav 2022; 17:149-160. [PMID: 36409402 PMCID: PMC10049962 DOI: 10.1007/s11682-022-00742-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 11/22/2022]
Abstract
AbstractAlterations in grey matter volume (GMV) and cortical thickness (CT) in Crohn’s disease (CD) patients has been previously documented. However, the findings are inconsistent, and not a true representation of CD burden, as only CD patients in remission have been studied thus far. We investigate alterations in brain morphometry in patients with active CD and those in remission, and study relationships between brain structure and key symptoms of fatigue, abdominal pain, and extraintestinal manifestations (EIM). Magnetic Resonance Imaging brain scans were collected in 89 participants; 34 CD participants with active disease, 13 CD participants in remission and 42 healthy controls (HCs); Voxel based morphometry (VBM) assessed GMV and white matter volume (WMV), and surface-based analysis assessed cortical thickness (CT). We show a significant reduction in global cerebrospinal fluid (CSF) volume in CD participants compared with HCs, as well as, a reduction in regional GMV, WMV and CT in the left precentral gyrus (motor cortex), and an increase in GMV in the frontal brain regions in CD compared with HCs. Atrophy of the supplementary motor area (SMA) was associated with greater fatigue in CD. We also show alterations in brain structure in multiple regions in CD associated with abdominal pain and extraintestinal inflammations (EIMs). These brain structural alterations likely reflect neuroplasticity to a chronic systemic inflammatory response, abdominal pain, EIMs and fatigue. These findings will aid our understanding of the cross-linking between chronic inflammation, brain structural changes and key unexplained CD symptomatology like fatigue.
Collapse
Affiliation(s)
- Gita Thapaliya
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Sally Eldeghaidy
- NIHR Nottingham Biomedical Research Centre, The University of Nottingham, Nottingham University Hospitals NHS Trust and School of Medicine, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, The University of Nottingham, Nottingham, UK
- School of Biosciences and Future Food Beacon, The University of Nottingham, Nottingham, UK
| | - Michael Asghar
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, The University of Nottingham, Nottingham, UK
| | - Jordan McGing
- NIHR Nottingham Biomedical Research Centre, The University of Nottingham, Nottingham University Hospitals NHS Trust and School of Medicine, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, The University of Nottingham, Nottingham, UK
| | - Shellie Radford
- NIHR Nottingham Biomedical Research Centre, The University of Nottingham, Nottingham University Hospitals NHS Trust and School of Medicine, Nottingham, UK
| | - Susan Francis
- NIHR Nottingham Biomedical Research Centre, The University of Nottingham, Nottingham University Hospitals NHS Trust and School of Medicine, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, The University of Nottingham, Nottingham, UK
| | - Gordon William Moran
- NIHR Nottingham Biomedical Research Centre, The University of Nottingham, Nottingham University Hospitals NHS Trust and School of Medicine, Nottingham, UK.
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, The University of Nottingham, Nottingham, UK.
- Translational Medical Sciences Unit, University of Nottingham, Nottingham, UK.
| |
Collapse
|
17
|
Tan C, Yan Q, Ma Y, Fang J, Yang Y. Recognizing the role of the vagus nerve in depression from microbiota-gut brain axis. Front Neurol 2022; 13:1015175. [PMID: 36438957 PMCID: PMC9685564 DOI: 10.3389/fneur.2022.1015175] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 08/08/2023] Open
Abstract
Depression is a worldwide disease causing severe disability, morbidity, and mortality. Despite abundant studies, the precise mechanisms underlying the pathophysiology of depression remain elusive. Recently, cumulate research suggests that a disturbance of microbiota-gut-brain axis may play a vital role in the etiology of depression while correcting this disturbance could alleviate depression symptoms. The vagus nerve, linking brain and gut through its afferent and efferent branches, is a critical route in the bidirectional communication of this axis. Directly or indirectly, the vagus afferent fibers can sense and relay gut microbiota signals to the brain and induce brain disorders including depression. Also, brain changes in response to stress may result in gut hyperpermeability and inflammation mediating by the vagal efferents, which may be detrimental to depression. Notably, vagus nerve stimulation owns an anti-inflammatory effect and was proved for depression treatment. Nevertheless, depression was accompanied by a low vagal tone, which may derive from response to stress and contribute to pathogenesis of depression. In this review, we aim to explore the role of the vagus nerve in depression from the perspective of the microbiota-gut-brain axis, highlighting the relationship among the vagal tone, the gut hyperpermeability, inflammation, and depression.
Collapse
Affiliation(s)
- Chaoren Tan
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| | - Qiqi Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongsheng Yang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
18
|
Evidence of persistent glial cell dysfunction in the anterior cingulate cortex of juvenile idiopathic arthritis children: a proton MRS study. Pediatr Rheumatol Online J 2022; 20:53. [PMID: 35897107 PMCID: PMC9327147 DOI: 10.1186/s12969-022-00711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND This study aims to investigate whether the neurometabolites of the anterior cingulate cortex (ACC) were distinct in patients with active and inactive juvenile idiopathic arthritis (JIA) using the proton magnetic resonance spectroscopy. METHODS We measured the levels of total N-acetylaspartate (tNAA), choline (Cho), myo-inositol (ml), glutamate (Glu) and the complex of glutamate and glutamine (Glx) relative to total creatine (tCr) in ACC of each participant. RESULTS Compared with the healthy controls, a significant decrease of total Cho/tCr and Glx/tCr ratio in ACC occurred in active and inactive JIA group. The tCho/Cr level was negatively associated with the serum level of ESR in active JIA patients. There was no difference in NAA/tCr ratio among the three groups, which may imply that no neuron and axonal losses occurred in either active or inactive JIA patients. CONCLUSIONS The abnormal neurometabolites in tCho/tCr and Glx/tCr in ACC may indicate that persistent dysfunction of glial cell, while neither neuron nor axonal losses occurred in active and inactive JIA patients.
Collapse
|
19
|
Kong N, Gao C, Zhang F, Zhang M, Yue J, Lv K, Zhang Q, Fan Y, Lv B, Zang Y, Xu M. Neurophysiological Effects of the Anterior Cingulate Cortex on the Exacerbation of Crohn’s Disease: A Combined fMRI-MRS Study. Front Neurosci 2022; 16:840149. [PMID: 35600612 PMCID: PMC9120361 DOI: 10.3389/fnins.2022.840149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Crohn’s disease (CD) is characterized by repetitive phases of remission and exacerbation, the quality of life of patients with CD is strongly influenced by disease activity, as patients in the active phase experience significantly worse symptoms. To investigate the underlying mechanism of how the course of CD is exacerbated based on the bi-directionality of the brain-gut axis (BGA), we conducted a multi-modality neuroimaging study that combined resting-state functional magnetic resonance imaging (rs-fMRI) with proton magnetic resonance spectroscopy (MRS) to detect abnormalities in the anterior cingulate cortex (ACC). Materials and Methods Clinical scales including Visual Analog Scale (VAS) and Hospital Anxiety and Depression Scale (HADS) were used to evaluate the degree of abdominal pain and mood state of participants. We made a comparison between CD patients in the active phase, the remission phase and healthy controls (HCs), not only employed the innovative wavelet-transform to analyze the amplitude of low frequency fluctuation (ALFF) but also compared the sensitivity of wavelet-transform and the traditional fast Fourier transform (FFT). Brain metabolites such as glutamate (Glu), myo-inositol (mIns) and gamma-aminobutyric acid (GABA) were also detected. Then correlation analysis was made to see whether changes in the ACC correlated with CD’s clinical symptoms. Results CD patients in the active phase showed higher VAS scores (p = 0.025), the scores of anxiety and depression were also higher (all p < 0.05). Wavelet-transform is slightly more sensitive in the current research. Patients in the active phase exhibited higher ALFF in the left ACC and the left superior frontal gyrus, medial (SFGmed). Patients in the active phase showed increased Glu levels in the ACC than patients in the remission phase or HCs (p = 0.039 and 0.034 respectively) and lower levels of mIns than HCs (p = 0.036). There was a positive correlation between mWavelet-ALFF values of the ACC and HADS-depression scores in CD patients (r = 0.462, p = 0.006). Besides, concentrations of Glu positively correlated with mWavelet-ALFF in the ACC in all participants (r = 0.367, p = 0.006). Conclusion Abnormal spontaneous activity and metabolic levels in the ACC were detected in CD patients in the active phase along with severer abdominal pain and worse mood state, these may contribute to the exacerbation of CD. Therefore, the ACC might be a potential neural alternative for managing the exacerbation of CD.
Collapse
Affiliation(s)
- Ning Kong
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Chen Gao
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Fan Zhang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Meng Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Juan Yue
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Kun Lv
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Zhang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Yihong Fan
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Bin Lv
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Yufeng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Maosheng Xu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- *Correspondence: Maosheng Xu,
| |
Collapse
|
20
|
Zhang S, Xu X, Li Q, Chen J, Liu S, Zhao W, Cai H, Zhu J, Yu Y. Brain Network Topology and Structural–Functional Connectivity Coupling Mediate the Association Between Gut Microbiota and Cognition. Front Neurosci 2022; 16:814477. [PMID: 35422686 PMCID: PMC9002058 DOI: 10.3389/fnins.2022.814477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that gut microbiota can influence cognition via the gut–brain axis, and brain networks play a critical role during the process. However, little is known about how brain network topology and structural–functional connectivity (SC–FC) coupling contribute to gut microbiota-related cognition. Fecal samples were collected from 157 healthy young adults, and 16S amplicon sequencing was used to assess gut diversity and enterotypes. Topological properties of brain structural and functional networks were acquired by diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (fMRI data), and SC–FC coupling was further calculated. 3-Back, digit span, and Go/No-Go tasks were employed to assess cognition. Then, we tested for potential associations between gut microbiota, complex brain networks, and cognition. The results showed that gut microbiota could affect the global and regional topological properties of structural networks as well as node properties of functional networks. It is worthy of note that causal mediation analysis further validated that gut microbial diversity and enterotypes indirectly influence cognitive performance by mediating the small-worldness (Gamma and Sigma) of structural networks and some nodal metrics of functional networks (mainly distributed in the cingulate gyri and temporal lobe). Moreover, gut microbes could affect the degree of SC–FC coupling in the inferior occipital gyrus, fusiform gyrus, and medial superior frontal gyrus, which in turn influence cognition. Our findings revealed novel insights, which are essential to provide the foundation for previously unexplored network mechanisms in understanding cognitive impairment, particularly with respect to how brain connectivity participates in the complex crosstalk between gut microbiota and cognition.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaotao Xu
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Li
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jingyao Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- *Correspondence: Jiajia Zhu,
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei, China
- Yongqiang Yu,
| |
Collapse
|
21
|
Kong N, Gao C, Xu M, Gao X. Changes in the anterior cingulate cortex in Crohn's disease: A neuroimaging perspective. Brain Behav 2021; 11:e02003. [PMID: 33314765 PMCID: PMC7994700 DOI: 10.1002/brb3.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Evidence suggests that Crohn's disease (CD) pathophysiology goes beyond the gastrointestinal tract and is also strongly associated with the brain. In particular, the anterior cingulate cortex (ACC), which plays an integral role in the first brain as part of the default mode network (DMN) and pain matrix, shows abnormalities using multiple neuroimaging modalities. This review summarizes nine related studies that investigated changes in the ACC using structural magnetic resonance imaging, resting-state functional magnetic resonance imaging, and magnetic resonance spectroscopy. METHODS An extensive PubMed literature search was conducted from 1980 to August 2020. In a review of the articles identified, particular attention was paid to analysis methods, technical protocol characteristics, and specific changes in the ACC. RESULTS In terms of morphology, a decrease in gray matter volume and cortical thickness was observed along with an increase in local gyrification index. In terms of function, functional connectivity (FC) within the DMN was increased. FC between the ACC and the amygdala was decreased. Higher amplitudes of low-frequency fluctuation and graph theory results, including connectivity strength, clustering coefficient, and local efficiency, were detected. In terms of neurotransmitter changes, the concentrations of glutamate increased along with a decrease in gamma-aminobutyric acid, providing a rational explanation for abdominal pain. These changes may be attributed to stress, pain, and negative emotions, as well as changes in gut microbiota. CONCLUSIONS For patients with CD, the ACC demonstrates structural, functional, and metabolic changes. In terms of clinical findings, the ACC plays an important role in the onset of depression/anxiety and abdominal pain. Therefore, successful modulation of this pathway may guide treatment.
Collapse
Affiliation(s)
- Ning Kong
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Gao
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Maosheng Xu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuning Gao
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|