1
|
Janus A, Dumas D, Le Douce J, Marie S, Pasculli G, Bambury P, Lemarchant S, Kremer P, Godfrin Y. Safety, Tolerability and Pharmacokinetic-Pharmacodynamic Relationship of NX210c Peptide in Healthy Elderly Volunteers: Randomized, Placebo-Controlled, Double-Blind, Multiple Ascending Dose Study. Neurol Ther 2025; 14:357-377. [PMID: 39708220 PMCID: PMC11762061 DOI: 10.1007/s40120-024-00691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
INTRODUCTION Blood-brain barrier (BBB) integrity is fundamental to brain homeostasis, enabling control of substance exchange and safeguarding neurons against harmful toxins, pathogens, and immune cells that lead to dysregulation and inflammation involved in ageing and neurodegenerative diseases (NDD). The cyclized peptide NX210c is a thrombospondin type 1 repeat analogue derived from subcommissural organ-spondin. It exerts beneficial effects in animal models of NDD owing to its effects on neurons and endothelial cells. NX210c demonstrated a good safety profile in a single ascending dose phase 1a clinical study. The present multiple ascending dose phase 1b study was performed to evaluate the tolerability and pharmacological effects of repeated doses of NX210c in healthy elderly (age: > 55 years) volunteers. METHODS This was a randomized, placebo-controlled, double-blind study (EudraCT No. 2022-002868-76), investigating safety/tolerability, pharmacokinetics, and pharmacodynamics (including blood and cerebrospinal fluid biomarkers). Participants received 5 or 10 mg/kg NX210c or placebo (10-min infusion) thrice weekly for 4 weeks in an ascending dose fashion. Follow-up was conducted 2 weeks after last dosing. RESULTS The investigation included 29 participants. No serious adverse events were recorded and all adverse events were mild. Dedicated central nervous system testing did not reveal neurotoxicity. Biomarker evaluation showed a statistically significant reduction in blood claudin-5 and a trend toward reduction of blood homocysteine. In silico data modelling revealed salient pharmacokinetic-pharmacodynamic relationships, including reduction of claudin-5, neurofilament light chain, and SPARC-like protein 1 release, and degradation of homocysteine. CONCLUSION Multiple doses of NX210c exhibited a good safety profile, showed non-cumulative pharmacokinetics, and exerted pharmacodynamic effects on biomarkers linked to BBB integrity. The effects of NX210c on claudin-5 and biomarkers influencing BBB integrity-and the overarching brain protection it offers-provide a novel therapeutic strategy targeting an underlying driver of neurodegenerative conditions for which disease-modifying treatments are limited or not available.
Collapse
Affiliation(s)
- Annette Janus
- Axoltis Pharma, Bioparc Laennec, 60 Avenue Rockefeller, 69008, Lyon, France.
| | - Daniël Dumas
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
- Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Juliette Le Douce
- Axoltis Pharma, Bioparc Laennec, 60 Avenue Rockefeller, 69008, Lyon, France
| | - Sébastien Marie
- Axoltis Pharma, Bioparc Laennec, 60 Avenue Rockefeller, 69008, Lyon, France
| | | | | | - Sighild Lemarchant
- Axoltis Pharma, Bioparc Laennec, 60 Avenue Rockefeller, 69008, Lyon, France
| | - Philip Kremer
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
- Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Yann Godfrin
- Axoltis Pharma, Bioparc Laennec, 60 Avenue Rockefeller, 69008, Lyon, France
- Godfrin Life-Sciences, Caluire-Et-Cuire, France
| |
Collapse
|
2
|
Wang J, Tang Y, Guo C, Du Z, Chen F, Fang S, Tang Y. Epigallocatechin gallate mitigates the motor deficits in a rotenone-induced Parkinson's disease rat model via promoting protein kinase D1 and inhibiting neuronal Parthanatos. Transl Neurosci 2025; 16:20250366. [PMID: 40026710 PMCID: PMC11868712 DOI: 10.1515/tnsci-2025-0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/05/2025] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Parkinson's disease (PD), a neurodegenerative disorder characterized by degeneration of the dopaminergic (DA) neurons, is still lack of available treatments to completely block neurodegeneration. (-)-Epigallocatechin-3-gallate (EGCG), a predominant active polyphenol generated from green tea, exerts multiple neuroprotective roles in the nervous system. However, the function role of EGCG in PD and the underlying mechanism remains to be investigated. In the current study, we used the rotenone injection to build the PD rat model, followed by the EGCG treatment and determined by the behavior tests, measurements of malondialdehyde, glutathione, and superoxide dismutase levels, and enzyme-linked immunosorbent assay. We revealed that, in PD rats, EGCG upregulates protein kinase D1 (PKD1) and inhibits Parthanatos to ameliorate the impaired motor function, reduce the expression of tyrosine hydroxylase, suppress the oxidative stress, and suppress the inflammation in substantia nigra. These combined results suggest that EGCG can suppress oxidative stress and inflammation to prevent DA neuron degeneration to prevent rotenone-induced motor impairments, laying the foundation for EGCG to be a novel candidate for the treatment of PD.
Collapse
Affiliation(s)
- Jianjun Wang
- Affiliated Hospital, Xiangnan University, Chenzhou, 423000, Hunan, China
- Department of Clinical, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Yaqi Tang
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Chenwu Guo
- Affiliated Hospital, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Zekun Du
- Department of Clinical, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Fen Chen
- Department of Pharmacy, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Shujuan Fang
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Yinjuan Tang
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan, China
| |
Collapse
|
3
|
Coretti L, Buommino E, Lembo F. The aryl hydrocarbon receptor pathway: a linking bridge between the gut microbiome and neurodegenerative diseases. Front Cell Neurosci 2024; 18:1433747. [PMID: 39175504 PMCID: PMC11338779 DOI: 10.3389/fncel.2024.1433747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
The Aryl hydrocarbon receptor (AHR) is a cytosolic receptor and ligand-activated transcription factor widely expressed across various cell types in the body. Its signaling is vital for host responses at barrier sites, regulating epithelial renewal, barrier integrity, and the activities of several types of immune cells. This makes AHR essential for various cellular responses during aging, especially those governing inflammation and immunity. In this review, we provided an overview of the mechanisms by which the AHR mediates inflammatory response at gut and brain level through signals from intestinal microbes. The age-related reduction of gut microbiota functions is perceived as a trigger of aberrant immune responses linking gut and brain inflammation to neurodegeneration. Thus, we explored gut microbiome impact on the nature and availability of AHR ligands and outcomes for several signaling pathways involved in neurodegenerative diseases and age-associated decline of brain functions, with an insight on Parkinson's and Alzheimer's diseases, the most common neurodegenerative diseases in the elderly. Specifically, we focused on microbial tryptophan catabolism responsible for the production of several AHR ligands. Perspectives for the development of microbiota-based interventions targeting AHR activity are presented for a healthy aging.
Collapse
Affiliation(s)
- Lorena Coretti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | | - Francesca Lembo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
5
|
Zhang X, Tang B, Guo J. Parkinson's disease and gut microbiota: from clinical to mechanistic and therapeutic studies. Transl Neurodegener 2023; 12:59. [PMID: 38098067 PMCID: PMC10722742 DOI: 10.1186/s40035-023-00392-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. The typical symptomatology of PD includes motor symptoms; however, a range of nonmotor symptoms, such as intestinal issues, usually occur before the motor symptoms. Various microorganisms inhabiting the gastrointestinal tract can profoundly influence the physiopathology of the central nervous system through neurological, endocrine, and immune system pathways involved in the microbiota-gut-brain axis. In addition, extensive evidence suggests that the gut microbiota is strongly associated with PD. This review summarizes the latest findings on microbial changes in PD and their clinical relevance, describes the underlying mechanisms through which intestinal bacteria may mediate PD, and discusses the correlations between gut microbes and anti-PD drugs. In addition, this review outlines the status of research on microbial therapies for PD and the future directions of PD-gut microbiota research.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
6
|
Sharma B, Gupta P, Biswas L, Verma AK, Pasha AM, Thota P, Medhi B. Neuroprotective potential of erucic acid via inhibition of N2a cell lines and rotenone induced Parkinson's disease rat model. Indian J Pharmacol 2023; 55:376-384. [PMID: 38174534 PMCID: PMC10821692 DOI: 10.4103/ijp.ijp_314_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 10/17/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the potential for erucic acid (EA), an omega-9 monounsaturated fatty acid, to act as a neuroprotective agent. MATERIALS AND METHODS In this study, EA was investigated against N2a cell lines and a rotenone (ROT)-induced model of Parkinson's disease for its neuroprotective potential. The N2a cell line was incubated with fetal bovine serum, penicillin, and streptomycin supplemented with Dulbecco's Modified Eagle's Medium, and the following assays were carried out: (i) MTT, (ii) biocompatibility, (iii) DCFDA, and (iv) diphenylamine. A cell morphology study was also performed. Further, ROT 1 mg/kg s.c. and EA 3 and 10 mg/kg p.o. were given to rats on a daily basis for 21 days, and the following parameters were assessed: (i) neurobehavioral studies, (ii) oxidative stress markers, (iii) neuroinflammatory markers, (iv) neurotransmitters, and (v) histopathological study. RESULTS The cell viability assay revealed that EA showed protection against ROT-induced toxicity in N2a cells, which was confirmed by a cell morphology study. EA decreased oxidative stress and % DNA fragmentation significantly. EA also prevented ROT-induced motor impairment and altered levels of oxidative stress markers, neurotransmitters, and neuroinflammatory markers significantly. When compared to the ROT group, a histological investigation of the EA group showed partial neuronal loss with the existence of intact neurons in between the vacuolated gaps. CONCLUSION This study revealed that EA possesses profound neuroprotective properties in in vitro and in vivo studies. Additional research can be carried out to study the mechanism of EA with respect to its neuroprotective potential.
Collapse
Affiliation(s)
- Bhawna Sharma
- Department of Pharmaceutical Sciences, School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Rural, Haryana, India
| | - Pankaj Gupta
- Department of Pharmaceutical Sciences, School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Rural, Haryana, India
| | - Largee Biswas
- Department of Pharmaceutical Sciences, School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Rural, Haryana, India
| | - Anita Kamra Verma
- Department of Zoology, Kirori Mal College, University of Delhi, University Enclave, Delhi, India
| | - Arif Mohammad Pasha
- Department of Pharmaceutical Chemistry, Jyothishmathi Institute of Pharmaceutical Sciences, Thimmapur, Telangana, India
| | - Prasad Thota
- Indian Pharmacopoeia Commission, Ghaziabad, Uttar Pradesh, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Turco G, Chang C, Wang RY, Kim G, Stoops EH, Richardson B, Sochat V, Rust J, Oughtred R, Thayer N, Kang F, Livstone MS, Heinicke S, Schroeder M, Dolinski KJ, Botstein D, Baryshnikova A. Global analysis of the yeast knockout phenome. SCIENCE ADVANCES 2023; 9:eadg5702. [PMID: 37235661 PMCID: PMC11326039 DOI: 10.1126/sciadv.adg5702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Genome-wide phenotypic screens in the budding yeast Saccharomyces cerevisiae, enabled by its knockout collection, have produced the largest, richest, and most systematic phenotypic description of any organism. However, integrative analyses of this rich data source have been virtually impossible because of the lack of a central data repository and consistent metadata annotations. Here, we describe the aggregation, harmonization, and analysis of ~14,500 yeast knockout screens, which we call Yeast Phenome. Using this unique dataset, we characterized two unknown genes (YHR045W and YGL117W) and showed that tryptophan starvation is a by-product of many chemical treatments. Furthermore, we uncovered an exponential relationship between phenotypic similarity and intergenic distance, which suggests that gene positions in both yeast and human genomes are optimized for function.
Collapse
Affiliation(s)
- Gina Turco
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Christie Chang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | - Griffin Kim
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Brianna Richardson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Vanessa Sochat
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Rust
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Rose Oughtred
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | - Fan Kang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Michael S Livstone
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Sven Heinicke
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Mark Schroeder
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kara J Dolinski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
8
|
Wang J, Yu Z, Hu Y, Li F, Huang X, Zhao X, Tang Y, Fang S, Tang Y. EGCG promotes the sensory function recovery in rats after dorsal root crush injury by upregulating KAT6A and inhibiting pyroptosis. Transl Neurosci 2023; 14:20220326. [PMID: 38152093 PMCID: PMC10751571 DOI: 10.1515/tnsci-2022-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023] Open
Abstract
Dorsal root injury usually leads to irreversible sensory function loss and lacks effective treatments. (-)-epigallocatechin-3-gallate (EGCG) is reported to exert neuroprotective roles in the nervous systems. However, the function of EGCG in treating dorsal root injury remains unclear. Hence, we built the dorsal root crush injury (DRCI) rat model to be treated with EGCG, followed by the western blot, Enzyme-linked immunosorbent assay, and sensory behavior tests. We observed that EGCG can upregulate the Lysine acetyltransferase 6A (KAT6A) level and inhibit the pyroptosis, indicated by downregulated gasdermin-D, caspase-1, and interleukin 18 protein levels, and alleviate the neuropathic pain, indicated by the decreased paw withdraw threshold in Plantar test and decreased paw withdraw latency in von Frey test, and downregulated calcitonin gene-related peptide, nerve growth factor, and c-Fos protein levels. But EGCG cannot alleviate the neuropathic pain when the KAT6A was inhibited by CTX-0124143 and pyroptosis was activated by Miltirone. These combined results indicated that EGCG can promote the sensory function recovery in rats after DRCI via upregulating KAT6A and inhibiting pyroptosis, laying the foundation for EGCG to be a novel candidate for the treatment of dorsal root injury.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, 423000, China
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Zuer Yu
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Yichun Hu
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Fuyu Li
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Xiaoyu Huang
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Xiangyue Zhao
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Yaqi Tang
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Shujuan Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Yinjuan Tang
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| |
Collapse
|
9
|
Zacharias HU, Kaleta C, Cossais F, Schaeffer E, Berndt H, Best L, Dost T, Glüsing S, Groussin M, Poyet M, Heinzel S, Bang C, Siebert L, Demetrowitsch T, Leypoldt F, Adelung R, Bartsch T, Bosy-Westphal A, Schwarz K, Berg D. Microbiome and Metabolome Insights into the Role of the Gastrointestinal-Brain Axis in Parkinson's and Alzheimer's Disease: Unveiling Potential Therapeutic Targets. Metabolites 2022; 12:metabo12121222. [PMID: 36557259 PMCID: PMC9786685 DOI: 10.3390/metabo12121222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's disease (AD), the prevalence of which is rapidly rising due to an aging world population and westernization of lifestyles, are expected to put a strong socioeconomic burden on health systems worldwide. Clinical trials of therapies against PD and AD have only shown limited success so far. Therefore, research has extended its scope to a systems medicine point of view, with a particular focus on the gastrointestinal-brain axis as a potential main actor in disease development and progression. Microbiome and metabolome studies have already revealed important insights into disease mechanisms. Both the microbiome and metabolome can be easily manipulated by dietary and lifestyle interventions, and might thus offer novel, readily available therapeutic options to prevent the onset as well as the progression of PD and AD. This review summarizes our current knowledge on the interplay between microbiota, metabolites, and neurodegeneration along the gastrointestinal-brain axis. We further illustrate state-of-the art methods of microbiome and metabolome research as well as metabolic modeling that facilitate the identification of disease pathomechanisms. We conclude with therapeutic options to modulate microbiome composition to prevent or delay neurodegeneration and illustrate potential future research directions to fight PD and AD.
Collapse
Affiliation(s)
- Helena U. Zacharias
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 30625 Hannover, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Correspondence: (H.U.Z.); (C.K.)
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Correspondence: (H.U.Z.); (C.K.)
| | | | - Eva Schaeffer
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Henry Berndt
- Research Group Comparative Immunobiology, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Lena Best
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
| | - Thomas Dost
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
| | - Svea Glüsing
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, 24118 Kiel, Germany
| | - Mathieu Groussin
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Mathilde Poyet
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian Heinzel
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Institute of Medical Informatics and Statistics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Leonard Siebert
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Tobias Demetrowitsch
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, 24118 Kiel, Germany
- Kiel Network of Analytical Spectroscopy and Mass Spectrometry, Kiel University, 24118 Kiel, Germany
| | - Frank Leypoldt
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Neuroimmunology, Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Rainer Adelung
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Thorsten Bartsch
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Anja Bosy-Westphal
- Institute of Human Nutrition and Food Science, Kiel University, 24107 Kiel, Germany
| | - Karin Schwarz
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, 24118 Kiel, Germany
- Kiel Network of Analytical Spectroscopy and Mass Spectrometry, Kiel University, 24118 Kiel, Germany
| | - Daniela Berg
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
10
|
Li D, Yu S, Long Y, Shi A, Deng J, Ma Y, Wen J, Li X, Liu S, Zhang Y, Wan J, Li N, Ao R. Tryptophan metabolism: Mechanism-oriented therapy for neurological and psychiatric disorders. Front Immunol 2022; 13:985378. [PMID: 36159806 PMCID: PMC9496178 DOI: 10.3389/fimmu.2022.985378] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
Neurological and psychiatric disorders are a category of chronic diseases that are widespread and pose serious mental and physical health problems for patients. The substrates, products, and enzymes of Tryptophan metabolism all contribute to the development of neurological and psychiatric disorders. This paper deals with three metabolic pathways of tryptophan that produce a series of metabolites called tryptophan Catabolics (TRYCATs). These metabolites are involved in pathological processes such as excitotoxicity, neuroinflammation, oxidative stress, and mitochondrial damage and are closely associated with neurological and psychiatric disorders such as Alzheimer's disease and depression. Here, we review the elements that affect how tryptophan metabolism is regulated, including inflammation and stress, exercise, vitamins, minerals, diet and gut microbes, glucocorticoids, and aging, as well as the downstream regulatory effects of tryptophan metabolism, including the regulation of glutamate (Glu), immunity, G-protein coupled receptor 35 (Gpr35), nicotinic acetylcholine receptor (nAChR), aryl hydrocarbon receptor (AhR), and dopamine (DA). In order to advance the general understanding of tryptophan metabolism in neurological and psychiatric disorders, this paper also summarizes the current situation and effective drugs of tryptophan metabolism in the treatment of neurological and psychiatric disorders and considers its future research prospects.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinyan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Ao
- Oncology Center, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
11
|
Gubert C, Gasparotto J, H. Morais L. Convergent pathways of the gut microbiota-brain axis and neurodegenerative disorders. Gastroenterol Rep (Oxf) 2022; 10:goac017. [PMID: 35582476 PMCID: PMC9109005 DOI: 10.1093/gastro/goac017] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/14/2022] Open
Abstract
Recent research has been uncovering the role of the gut microbiota for brain health and disease. These studies highlight the role of gut microbiota on regulating brain function and behavior through immune, metabolic, and neuronal pathways. In this review we provide an overview of the gut microbiota axis pathways to lay the groundwork for upcoming sessions on the links between the gut microbiota and neurogenerative disorders. We also discuss how the gut microbiota may act as an intermediate factor between the host and the environment to mediate disease onset and neuropathology. Based on the current literature, we further examine the potential for different microbiota-based therapeutic strategies to prevent, to modify, or to halt the progress of neurodegeneration.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Juciano Gasparotto
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, Alfenas, Minas Gerais, Brasil
| | - Livia H. Morais
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
12
|
Wang J, Yin J, Zheng X. Artemisinin upregulates neural cell adhesion molecule L1 to attenuate neurological deficits after intracerebral hemorrhage in mice. Brain Behav 2022; 12:e2558. [PMID: 35349764 PMCID: PMC9120716 DOI: 10.1002/brb3.2558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/29/2022] [Accepted: 03/05/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Intracerebral hemorrhage (ICH) is a subtype of stroke and results in neurological deficits in patients without any effective treatments. Artemisinin (ART), a well-known antimalarial Chinese medicine, exerts multiple essential roles in the central and peripheral nervous system due to its antioxidative and anti-inflammation properties. Neural cell adhesion molecule L1 (L1CAM, L1) is considered to be implicated in neural development, functional maintenance, and neuroprotection during disease. However, whether these two essential molecules are neuroprotective in ICH remains unclear. METHODS Therefore, the present study investigated the influence of ART on the recovery of neurological deficits in a mouse model of ICH induced by collagenase and the underlying mechanism. RESULTS It was revealed that ART is capable of upregulating L1 expression to alleviate brain edema, reduce oxidative stress, and inhibit inflammation to alleviate ICH-induced brain injury to improve the neurological outcome in mice suffering from ICH. CONCLUSION These results may lay the foundation for ART to be a novel candidate treatment for ICH.
Collapse
Affiliation(s)
- Jianjiang Wang
- Department of Neurosurgery, General Hospital of Xinjiang Military Region, Urumqi, China
| | - Jie Yin
- Department of Neurosurgery, General Hospital of Xinjiang Military Region, Urumqi, China
| | - Xi Zheng
- Department of Neurosurgery, General Hospital of Xinjiang Military Region, Urumqi, China
| |
Collapse
|
13
|
Song Y, Wu Z, Zhao P. The protective effects of activating Sirt1/NF-κB pathway for neurological disorders. Rev Neurosci 2021; 33:427-438. [PMID: 34757706 DOI: 10.1515/revneuro-2021-0118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/08/2021] [Indexed: 12/30/2022]
Abstract
Sirt1, a member of the sirtuins family, is a nicotinamide adenosine dinucleotide (NAD+)-dependent deacetylase. It can be involved in the regulation of several processes including inflammatory response, apoptosis, oxidative stress, energy metabolism, and autophagy by exerting deacetylation. Nuclear factor-κB (NF-κB), a crucial nuclear transcription factor with specific DNA binding sequences, exists in almost all cells and plays a vital role in several biological processes involving inflammatory response, immune response, and apoptosis. As the hub of multiple intracellular signaling pathways, the activity of NF-κB is regulated by multiple factors. Sirt1 can both directly deacetylate NF-κB and indirectly through other molecules to inhibit its activity. We would like to emphasize that Sirt1/NF-κB is a signaling pathway that is closely related to neuroinflammation. Many recent studies have demonstrated the neuroprotective effects of Sirt1/NF-κB signaling pathway activation applied to the treatment of neurological related diseases. In this review, we focus on new advances in the neuroprotective effects of the Sirt1/NF-κB pathway. First, we briefly review Sirt1 and NF-κB, two key molecules of cellular metabolism. Next, we discuss the connection between NF-κB and neuroinflammation. In addition, we explore how Sirt1 regulates NF-κB in nerve cells and relevant evidence. Finally, we analyze the therapeutic effects of the Sirt1/NF-κB pathway in several common neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
14
|
Wang Y, Chen S, Tan J, Gao Y, Yan H, Liu Y, Yi S, Xiao Z, Wu H. Tryptophan in the diet ameliorates motor deficits in a rotenone-induced rat Parkinson's disease model via activating the aromatic hydrocarbon receptor pathway. Brain Behav 2021; 11:e2226. [PMID: 34105899 PMCID: PMC8413809 DOI: 10.1002/brb3.2226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/12/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD), a common neurodegenerative disorder with motor and nonmotor symptoms, does not have effective treatments. Dietary tryptophan (Trp) supplementation has potential benefits for the treatment of multiple disorders. However, whether additional Trp in the diet could be beneficial for PD remains to beinvestigated. In the present study, the neuroprotective role of dietary Trp on a rotenone-induced rat model of PD was determined. METHODS The rotenone was injected to build the PD model, and then the rats were treated with Trp in the diet. And then, an open field test, western blot analysis, and enzyme linked immunosorbent assay (ELISA) were performed. RESULTS We observed that dietary Trp significantly ameliorated impaired motor function, upregulated tyrosine hydroxylase expression, inhibited the nuclear transport of Nuclear factor-kappa B (NF-κB) in substantia nigra (SN), and downregulated the protein levels of IL-1β, IL-6, and TNF-α in serum in rotenone-treated rats. However, these patterns were reversed in response to treatment with ampicillin, an agent that can clean intestinal Trp metabolism flora. Moreover, after using CH223191, an inhibitor of the aromatic hydrocarbon receptor (AhR) pathway, dietary Trp could not exert neuroprotective roles in the rotenone-induced rat model of PD. CONCLUSION These results suggest that Trp in the diet can protect against rotenone-induced neurotoxicity to ameliorate motor deficits, which may be mediated through activating AhR pathway.
Collapse
Affiliation(s)
- Yilin Wang
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China.,Affiliated Nanhua Hospital, University of South China, Hengyang, PR China
| | - Shuangxi Chen
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China
| | - Jian Tan
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China
| | - Yijiang Gao
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China
| | - Hongye Yan
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China
| | - Yao Liu
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China
| | - Shanqing Yi
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China
| | - Zijian Xiao
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China
| | - Heng Wu
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, PR China
| |
Collapse
|