1
|
García Beristain JC, de Celis Alonso B, Barragan Perez E, Dies-Suarez P, Hidalgo-Tobón S. BOLD Activation During the Application of MOXO-CPT in School Patients With and Without Attention Deficit Hyperactivity Disorder. J Atten Disord 2024; 28:321-334. [PMID: 38153047 PMCID: PMC10838480 DOI: 10.1177/10870547231217093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
INTRODUCTION Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects 3% of children in the world. OBJECTIVE In this work, we seek to compare the different brain activations of pediatric patients with and without ADHD. METHODS A functional resonance examination with BOLD contrast was applied using the MOXO-CPT test (Continuous Performance test with single and double visual-auditory distractors). RESULTS Differences in BOLD activation were observed indicating that control children regularly presented negative BOLD activations that were not found in children with ADHD. Inhibitory activity in audiovisual association zones in control patients was greater than in patients with ADHD. The inhibition in the frontal and motor regions in the controls contrasted with the overactivation of the motor areas in patients with ADHD, this, together with the detection of cerebellar activation which attempted to modulate the responses of the different areas that lead to executive failure in patients with ADHD. CONCLUSIONS In view of these results, it can be argued that the lack of inhibition of ADHD patients in their executive functions led to a disorganization of the different brain systems.
Collapse
Affiliation(s)
| | | | | | - Pilar Dies-Suarez
- Hospital Infantil de México Federico Gomez, Cuauhtémoc, Mexico City, Mexico
| | - Silvia Hidalgo-Tobón
- Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
- Hospital Infantil de México Federico Gómez, Cuauhtémoc, Mexico City, Mexico
| |
Collapse
|
2
|
Nguyen T, Flaten E, Trainor LJ, Novembre G. Early social communication through music: State of the art and future perspectives. Dev Cogn Neurosci 2023; 63:101279. [PMID: 37515832 PMCID: PMC10407289 DOI: 10.1016/j.dcn.2023.101279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
A growing body of research shows that the universal capacity for music perception and production emerges early in development. Possibly building on this predisposition, caregivers around the world often communicate with infants using songs or speech entailing song-like characteristics. This suggests that music might be one of the earliest developing and most accessible forms of interpersonal communication, providing a platform for studying early communicative behavior. However, little research has examined music in truly communicative contexts. The current work aims to facilitate the development of experimental approaches that rely on dynamic and naturalistic social interactions. We first review two longstanding lines of research that examine musical interactions by focusing either on the caregiver or the infant. These include defining the acoustic and non-acoustic features that characterize infant-directed (ID) music, as well as behavioral and neurophysiological research examining infants' processing of musical timing and pitch. Next, we review recent studies looking at early musical interactions holistically. This research focuses on how caregivers and infants interact using music to achieve co-regulation, mutual engagement, and increase affiliation and prosocial behavior. We conclude by discussing methodological, technological, and analytical advances that might empower a comprehensive study of musical communication in early childhood.
Collapse
Affiliation(s)
- Trinh Nguyen
- Neuroscience of Perception and Action Lab, Italian Institute of Technology, Rome, Italy.
| | - Erica Flaten
- Department of Psychology, Neuroscience and Behavior, McMaster University, Hamilton, Canada
| | - Laurel J Trainor
- Department of Psychology, Neuroscience and Behavior, McMaster University, Hamilton, Canada; McMaster Institute for Music and the Mind, McMaster University, Hamilton, Canada; Rotman Research Institute, Baycrest Hospital, Toronto, Canada
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab, Italian Institute of Technology, Rome, Italy
| |
Collapse
|
3
|
Bower J, Magee WL, Catroppa C, Baker FA. The Neurophysiological Processing of Music in Children: A Systematic Review With Narrative Synthesis and Considerations for Clinical Practice in Music Therapy. Front Psychol 2021; 12:615209. [PMID: 33935868 PMCID: PMC8081903 DOI: 10.3389/fpsyg.2021.615209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction: Evidence supporting the use of music interventions to maximize arousal and awareness in adults presenting with a disorder of consciousness continues to grow. However, the brain of a child is not simply a small adult brain, and therefore adult theories are not directly translatable to the pediatric population. The present study aims to synthesize brain imaging data about the neural processing of music in children aged 0-18 years, to form a theoretical basis for music interventions with children presenting with a disorder of consciousness following acquired brain injury. Methods: We conducted a systematic review with narrative synthesis utilizing an adaptation of the methodology developed by Popay and colleagues. Following the development of the narrative that answered the central question "what does brain imaging data reveal about the receptive processing of music in children?", discussion was centered around the clinical implications of music therapy with children following acquired brain injury. Results: The narrative synthesis included 46 studies that utilized EEG, MEG, fMRI, and fNIRS scanning techniques in children aged 0-18 years. From birth, musical stimuli elicit distinct but immature electrical responses, with components of the auditory evoked response having longer latencies and variable amplitudes compared to their adult counterparts. Hemodynamic responses are observed throughout cortical and subcortical structures however cortical immaturity impacts musical processing and the localization of function in infants and young children. The processing of complex musical stimuli continues to mature into late adolescence. Conclusion: While the ability to process fundamental musical elements is present from birth, infants and children process music more slowly and utilize different cortical areas compared to adults. Brain injury in childhood occurs in a period of rapid development and the ability to process music following brain injury will likely depend on pre-morbid musical processing. Further, a significant brain injury may disrupt the developmental trajectory of complex music processing. However, complex music processing may emerge earlier than comparative language processing, and occur throughout a more global circuitry.
Collapse
Affiliation(s)
- Janeen Bower
- Faculty of Fine Arts and Music, The University of Melbourne, Melbourne, VIC, Australia
- Brain and Mind, Clinical Sciences, The Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Music Therapy Department, The Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Wendy L. Magee
- Boyer College of Music and Dance, Temple University, Philadelphia, PA, United States
| | - Cathy Catroppa
- Brain and Mind, Clinical Sciences, The Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Melbourne School of Psychological Sciences and The Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Psychology Department, The Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Felicity Anne Baker
- Faculty of Fine Arts and Music, The University of Melbourne, Melbourne, VIC, Australia
- Centre of Research in Music and Health, Norwegian Academy of Music, Oslo, Norway
| |
Collapse
|
4
|
Tobón SSH, Suárez PD, Pérez EB, López JMH, García J, de Celis Alonso B. Lisdexamfetamine Alters BOLD-fMRI Activations Induced by Odor Cues in Impulsive Children. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:290-305. [PMID: 32533819 DOI: 10.2174/1871527319666200613222502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Lisdexamfetamine (LDX) is a drug used to treat ADHD/impulsive patients. Impulsivity is known to affect inhibitory, emotional and cognitive function. On the other hand, smell and odor processing are known to be affected by neurological disorders, as they are modulators of addictive and impulsive behaviors specifically. We hypothesize that, after LDX ingestion, inhibitory pathways of the brain would change, and complementary behavioral regulation mechanisms would appear to regulate decision-making and impulsivity. METHODS 20 children were studied in an aleatory crossover study. Imaging of BOLD-fMRI activity, elicited by olfactory stimulation in impulsive children, was performed after either LDX or placebo ingestion. RESULTS Findings showed that all subjects who underwent odor stimulation presented activations of similar intensities in the olfactory centers of the brain. This contrasted with inhibitory regions of the brain such as the cingulate cortex and frontal lobe regions, which demonstrated changed activity patterns and intensities. While some differences between the placebo and medicated states were found in motor areas, precuneus, cuneus, calcarine, supramarginal, cerebellum and posterior cingulate cortex, the main changes were found in frontal, temporal and parietal cortices. When comparing olfactory cues separately, pleasant food smells like chocolate seemed not to present large differences between the medicated and placebo scenarios, when compared to non-food-related smells. CONCLUSION It was demonstrated that LDX, first, altered the inhibitory pathways of the brain, secondly it increased activity in several brain regions which were not activated by smell in drug-naïve patients, and thirdly, it facilitated a complementary behavioral regulation mechanism, run by the cerebellum, which regulated decision-making and impulsivity in motor and frontal structures.
Collapse
Affiliation(s)
- Silvia S Hidalgo Tobón
- Imaging Department, Infant Hospital of Mexico, Federico Gómez, 06720 Ciudad de México, CDMX, Mexico.,Physics Department, Universidad Autonoma Metropolitana (UAM) Iztapalapa, Colonia Vicentina Iztapalapa, 09340, CDMX, Mexico
| | - Pilar Dies Suárez
- Imaging Department, Infant Hospital of Mexico, Federico Gómez, 06720 Ciudad de México, CDMX, Mexico
| | - Eduardo Barragán Pérez
- Neurology Department, Infant Hospital of Mexico, Federico Gómez, 06720 Ciudad de México, CDMX, Mexico
| | - Javier M Hernández López
- Faculty of Mathematical and Physical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), C.P. 72570, Puebla, Mexico
| | - Julio García
- Department of Cardiac Sciences, Stephenson Cardiac Imaging Centre, Calgary University, Calgary, AB T2N 1N4, Canada
| | - Benito de Celis Alonso
- Faculty of Mathematical and Physical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), C.P. 72570, Puebla, Mexico
| |
Collapse
|
5
|
Zhang C, Lee TMC, Fu Y, Ren C, Chan CCH, Tao Q. Properties of cross-modal occipital responses in early blindness: An ALE meta-analysis. NEUROIMAGE-CLINICAL 2019; 24:102041. [PMID: 31677587 PMCID: PMC6838549 DOI: 10.1016/j.nicl.2019.102041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/20/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022]
Abstract
ALE meta-analysis reveals distributed brain networks for object and spatial functions in individuals with early blindness. ALE contrast analysis reveals specific activations in the left cuneus and lingual gyrus for language function, suggesting a reverse hierarchical organization of the visual cortex for early blind individuals. The findings contribute to visual rehabilitation in blind individuals by revealing the function-dependent and sensory-independent networks during nonvisual processing.
Cross-modal occipital responses appear to be essential for nonvisual processing in individuals with early blindness. However, it is not clear whether the recruitment of occipital regions depends on functional domain or sensory modality. The current study utilized a coordinate-based meta-analysis to identify the distinct brain regions involved in the functional domains of object, spatial/motion, and language processing and the common brain regions involved in both auditory and tactile modalities in individuals with early blindness. Following the PRISMA guidelines, a total of 55 studies were included in the meta-analysis. The specific analyses revealed the brain regions that are consistently recruited for each function, such as the dorsal fronto-parietal network for spatial function and ventral occipito-temporal network for object function. This is consistent with the literature, suggesting that the two visual streams are preserved in early blind individuals. The contrast analyses found specific activations in the left cuneus and lingual gyrus for language function. This finding is novel and suggests a reverse hierarchical organization of the visual cortex for early blind individuals. The conjunction analyses found common activations in the right middle temporal gyrus, right precuneus and a left parieto-occipital region. Clinically, this work contributes to visual rehabilitation in early blind individuals by revealing the function-dependent and sensory-independent networks during nonvisual processing.
Collapse
Affiliation(s)
- Caiyun Zhang
- Psychology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Tatia M C Lee
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong, CHINA; Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong, CHINA; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunwei Fu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Chaoran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China; Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, 510632, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, CHINA.
| | - Qian Tao
- Psychology Department, School of Medicine, Jinan University, Guangzhou 510632, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China.
| |
Collapse
|
6
|
Guerrero Arenas C, Hidalgo Tobón SS, Dies Suarez P, Barragán Pérez E, Castro Sierra E, García J, de Celis Alonso B. Strategies for tonal and atonal musical interpretation in blind and normally sighted children: an fMRI study. Brain Behav 2016; 6:e00450. [PMID: 27066309 PMCID: PMC4802423 DOI: 10.1002/brb3.450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/19/2016] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Early childhood is known to be a period when cortical plasticity phenomena are at a maximum. Music is a stimulus known to modulate these mechanisms. On the other hand, neurological impairments like blindness are also known to affect cortical plasticity. Here, we address how tonal and atonal musical stimuli are processed in control and blind young children. We aimed to understand the differences between the two groups when processing this physiological information. RESULTS Atonal stimuli produced larger activations in cerebellum, fusiform, and temporal lobe structures than tonal. In contrast, tonal stimuli induced larger frontal lobe representations than atonal. Control participants presented large activations in cerebellum, fusiform, and temporal lobe. A correlation/connectivity study showed that the blind group incorporated larger amounts of perceptual information (somatosensory and motor) into tonal processing through the function of the anterior prefrontal cortex (APC). They also used the visual cortex in conjunction with the Wernicke's area to process this information. In contrast, controls processed sound with perceptual stimuli from auditory cortex structures (including Wernicke's area). In this case, information was processed through the dorsal posterior cingulate cortex and not the APC. The orbitofrontal cortex also played a key role for atonal interpretation in this group. DISCUSSION Wernicke's area, known to be involved in speech, was heavily involved for both groups and all stimuli. The two groups presented clear differences in strategies for music processing, with very different recruitment of brain regions.
Collapse
Affiliation(s)
| | - Silvia S Hidalgo Tobón
- Departamento de Imagenología Hospital Infantil de México Federico Gómez México DF Mexico; Departamento de Física Universidad Autónoma Metropolitana, Campus Iztapalapa México DF Mexico
| | - Pilar Dies Suarez
- Departamento de Imagenología Hospital Infantil de México Federico Gómez México DF Mexico
| | - Eduardo Barragán Pérez
- Departamento de Imagenología Hospital Infantil de México Federico Gómez México DF Mexico
| | - Eduardo Castro Sierra
- Departamento de Imagenología Hospital Infantil de México Federico Gómez México DF Mexico
| | - Julio García
- Department of Radiology Feinberg School of Medicine - Northwestern University Chicago Illinois
| | - Benito de Celis Alonso
- Facultad de Ciencias Físico - Matemáticas Benemérita Universidad Autónoma de Puebla Puebla Mexico
| |
Collapse
|