1
|
Ullah H, Pervez S, Ahmed S, Haleem KS, Qayyum S, Niaz Z, Nawaz MA, Nawaz F, Subhan F, Tauseef I. Preparation, characterization and stability studies of cross-linked α-amylase aggregates (CLAAs) for continuous liquefaction of starch. Int J Biol Macromol 2021; 173:267-276. [PMID: 33454331 DOI: 10.1016/j.ijbiomac.2021.01.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/30/2020] [Accepted: 01/10/2021] [Indexed: 11/16/2022]
Abstract
In current study, α-amylase of fungal origin was immobilized using cross-linking strategy. The influence of precipitant (ammonium sulphate) and cross-linker (glutaraldehyde) concentration revealed that 60% (w/v) precipitant and 1.5% (v/v) cross-linker saturation was required to attain optimum activity. Cross-linked amylase aggregates (CLAAs) were characterized and 10-degree shift in optimum temperature (soluble enzyme: 50 °C; cross-linked: 60 °C) and 1-unit shift in pH (soluble enzyme: pH -6; cross-linked: pH -7) was observed after immobilization. The Vmax for soluble α-amylase and its cross-linked form was 1225 U ml-1 and 3629 U ml-1, respectively. The CLAAs was more thermostable than its soluble form and retained its 30% activity even after 60 min of incubation at 70 °C. Moreover, cross-linked amylase retained its activity after two months while its soluble counterpart lost its complete activity after 10 and 20 days at 30 °C and 4 °C storage, respectively. Reusability test showed that cross-linked amylase could retain 13% of its residual activity after 10 repeated cycles. Therefore, 10 times more glucose was produced after cross-linking than soluble amylase when it was utilized multiple times. This study indicates that amylase aggregates are highly effective for continuous liquefaction of starch, hence have strong potential to be used for different industrial processes.
Collapse
Affiliation(s)
- Hidayat Ullah
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | - Sidra Pervez
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan.
| | - Shehzad Ahmed
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | | | - Sadia Qayyum
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | - Zeeshan Niaz
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | - Muhammad Asif Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), KPK, Pakistan
| | - Faiza Nawaz
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | - Fazli Subhan
- Department of Biological Sciences, NUMS, Rawalpindi 46000, Pakistan
| | - Isfahan Tauseef
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan.
| |
Collapse
|
2
|
Pervez S, Nawaz MA, Shahid F, Aman A, Tauseef I, Qader SAU. Characterization of cross-linked amyloglucosidase aggregates from Aspergillus fumigatus KIBGE-IB33 for continuous production of glucose. Int J Biol Macromol 2019; 135:1252-1260. [DOI: 10.1016/j.ijbiomac.2018.11.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 04/24/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
|
3
|
Abstract
Biocatalysis has emerged in the last decade as a pre-eminent technology for enabling the envisaged transition to a more sustainable bio-based economy. For industrial viability it is essential that enzymes can be readily recovered and recycled by immobilization as solid, recyclable catalysts. One method to achieve this is via carrier-free immobilization as cross-linked enzyme aggregates (CLEAs). This methodology proved to be very effective with a broad selection of enzymes, in particular carbohydrate-converting enzymes. Methods for optimizing CLEA preparations by, for example, adding proteic feeders to promote cross-linking, and strategies for making the pores accessible for macromolecular substrates are critically reviewed and compared. Co-immobilization of two or more enzymes in combi-CLEAs enables the cost-effective use of multiple enzymes in biocatalytic cascade processes and the use of “smart” magnetic CLEAs to separate the immobilized enzyme from other solids has raised the CLEA technology to a new level of industrial and environmental relevance. Magnetic-CLEAs of polysaccharide-converting enzymes, for example, are eminently suitable for use in the conversion of first and second generation biomass.
Collapse
|
4
|
Bian H, Cao M, Wen H, Tan Z, Jia S, Cui J. Biodegradation of polyvinyl alcohol using cross-linked enzyme aggregates of degrading enzymes from Bacillus niacini. Int J Biol Macromol 2019; 124:10-16. [DOI: 10.1016/j.ijbiomac.2018.11.204] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/03/2018] [Accepted: 11/20/2018] [Indexed: 01/15/2023]
|