1
|
Zhang T, Liu G, Li Y, Zhang Y. Construction of a redox-coupled pathway co-metabolizing glucose and acetate for high-yield production of butyl butyrate in Escherichia coli. BIORESOURCE TECHNOLOGY 2024; 413:131437. [PMID: 39244107 DOI: 10.1016/j.biortech.2024.131437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The carbon and energy efficiency of a biomanufacturing process is of crucial importance in determining its economic viability. Formate dehydrogenase has been demonstrated to be beneficial in regenerating NADH from formate produced during sugar metabolism, thereby creating energy-efficient systems. Nevertheless, introducing enzyme(s) for butyryl butyrate (BB) biosynthesis based on this system, only 1.64 g/L BB with 14.3 % carbon yield was obtained due to an imbalance in NADH-NAD+ turnover. To address the issue of NADH accumulation, a joint redox-balanced pathway for BB biosynthesis was developed in this study by coupling acetate and glucose metabolism. Following overexpression of acetyl-CoA synthetase in the BB-producing strain, acetate and glucose were co-utilized stoichiometrically and intracellular redox homeostasis was achieved. The engineered strain produced 29.02 g/L BB with carbon yield of 43.3 %, representing the highest yield ever reported for fermentative production of BB. It indicated the potential for developing a carbon- and energy-effective route for biomanufacturing.
Collapse
Affiliation(s)
- Tianrui Zhang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxia Liu
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yanping Zhang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
3
|
Boecker S, Schulze P, Klamt S. Growth-coupled anaerobic production of isobutanol from glucose in minimal medium with Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:148. [PMID: 37789464 PMCID: PMC10548627 DOI: 10.1186/s13068-023-02395-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND The microbial production of isobutanol holds promise to become a sustainable alternative to fossil-based synthesis routes for this important chemical. Escherichia coli has been considered as one production host, however, due to redox imbalance, growth-coupled anaerobic production of isobutanol from glucose in E. coli is only possible if complex media additives or small amounts of oxygen are provided. These strategies have a negative impact on product yield, productivity, reproducibility, and production costs. RESULTS In this study, we propose a strategy based on acetate as co-substrate for resolving the redox imbalance. We constructed the E. coli background strain SB001 (ΔldhA ΔfrdA ΔpflB) with blocked pathways from glucose to alternative fermentation products but with an enabled pathway for acetate uptake and subsequent conversion to ethanol via acetyl-CoA. This strain, if equipped with the isobutanol production plasmid pIBA4, showed robust exponential growth (µ = 0.05 h-1) under anaerobic conditions in minimal glucose medium supplemented with small amounts of acetate. In small-scale batch cultivations, the strain reached a glucose uptake rate of 4.8 mmol gDW-1 h-1, a titer of 74 mM and 89% of the theoretical maximal isobutanol/glucose yield, while secreting only small amounts of ethanol synthesized from acetate. Furthermore, we show that the strain keeps a high metabolic activity also in a pulsed fed-batch bioreactor cultivation, even if cell growth is impaired by the accumulation of isobutanol in the medium. CONCLUSIONS This study showcases the beneficial utilization of acetate as a co-substrate and redox sink to facilitate growth-coupled production of isobutanol under anaerobic conditions. This approach holds potential for other applications with different production hosts and/or substrate-product combinations.
Collapse
Affiliation(s)
- Simon Boecker
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
- University of Applied Sciences Berlin, Seestr. 64, 13347, Berlin, Germany
| | - Peter Schulze
- Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| |
Collapse
|
4
|
Garg S, Behera S, Ruiz HA, Kumar S. A Review on Opportunities and Limitations of Membrane Bioreactor Configuration in Biofuel Production. Appl Biochem Biotechnol 2023; 195:5497-5540. [PMID: 35579743 DOI: 10.1007/s12010-022-03955-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/02/2022] [Indexed: 12/13/2022]
Abstract
Biofuels are a clean and renewable source of energy that has gained more attention in recent years; however, high energy input and processing cost during the production and recovery process restricted its progress. Membrane technology offers a range of energy-saving separation for product recovery and purification in biorefining along with biofuel production processes. Membrane separation techniques in combination with different biological processes increase cell concentration in the bioreactor, reduce product inhibition, decrease chemical consumption, reduce energy requirements, and further increase product concentration and productivity. Certain membrane bioreactors have evolved with the ability to deal with different biological production and separation processes to make them cost-effective, but there are certain limitations. The present review describes the advantages and limitations of membrane bioreactors to produce different biofuels with the ability to simplify upstream and downstream processes in terms of sustainability and economics.
Collapse
Affiliation(s)
- Shruti Garg
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India
- Department of Microbiology, Guru Nanak Dev University, Grand Trunk Road, Amritsar, Punjab, 143040, India
| | - Shuvashish Behera
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India.
- Department of Alcohol Technology and Biofuels, Vasantdada Sugar Institute, Manjari (Bk.), Pune, 412307, India.
| | - Hector A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280, Saltillo, Coahuila, Mexico
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India.
| |
Collapse
|
5
|
In-situ recovery of butanol from ABE fermentation solution by hydrophobic ionic liquid perstraction in tubular membranes assisted with vacuum. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
6
|
Monascus Yellow Pigment Production by Coupled Immobilized-Cell Fermentation and Extractive Fermentation in Nonionic Surfactant Micelle Aqueous Solution. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Microbial fermentation with immobilized cells possesses many advantages. However, this fermentation mode is restricted to the production of extracellular products. Our previous study demonstrated that the extractive fermentation of Monascus spp. in nonionic surfactant micelle aqueous solution can export Monascus pigments that are supposed to be mainly intracellular products to extracellular culture broth and, in the meantime, extracellularly enhance the production of yellow pigments at a low pH condition; consequently, this makes the continuous production of yellow pigments with immobilized Monascus cells feasible. In this study, immobilized-cell fermentation and extractive fermentation in Triton X-100 micelle aqueous solution were successfully combined to continuously produce Monascus yellow pigments extracellularly. We examined the effects of cell immobilization and Triton X-100 on cell growth, pigment production, and pigment composition. In the repeated-batch extractive fermentation with immobilized cells, the biomass in Ca-alginate gel beads continued to grow and reached 21.2 g/L after seven batches, and dominant yellow pigments were produced extracellularly and stable for each batch. The mean productivity of the extracellular yellow pigments reached up to 22.31 AU410 nm/day within the first four batches (13 days) and 19.7 AU410 nm/day within the first seven batches (25 days). The results also provide a new strategy for producing such intracellular products continuously and extracellularly.
Collapse
|
7
|
Perstraction: A Membrane-Assisted Liquid–Liquid Extraction of PFOA from Water. Processes (Basel) 2023. [DOI: 10.3390/pr11010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This study represents a first time that perstraction was assessed as a process to remove perfluorooctanoic acid (PFOA) from water. In the perstraction process, PFOA permeates through a membrane from water to a solvent. The membrane used in this study was polydimethylsiloxane (PDMS). The experimental approach included the following: (1) measurement of partition coefficients for PFOA between water and selected solvents; (2) determination of solubility and diffusivity of the solvents in PDMS; (3) determination of the uptake of PFOA in PDMS; (4) determination of the effects of selected particles imbedded in the PDMS on PFOA uptake and solvent absorption; and (5) demonstration of the perstraction process to remove PFOA from water. PFOA preferentially partitioned to alcohols over water. In addition, ZnO and CuO particles in PDMS significantly enhanced the rate at which PFOA was absorbed in PDMS from deionized water due to ionic interactions. The perstraction of PFOA from deionized water into hexanol was demonstrated. However, perstraction was not successful at removing PFOA from tap water. While the application of perstraction to removing PFOA from water is limited, the idea was demonstrated and information contained within this manuscript is new.
Collapse
|
8
|
Arregoitia-Sarabia C, González-Revuelta D, Fallanza M, Ortiz A, Gorri D. PEBA/PDMS Composite Multilayer Hollow Fiber Membranes for the Selective Separation of Butanol by Pervaporation. MEMBRANES 2022; 12:membranes12101007. [PMID: 36295765 PMCID: PMC9610642 DOI: 10.3390/membranes12101007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 06/02/2023]
Abstract
The growing interest in the production of biofuels has motivated numerous studies on separation techniques that allow the separation/concentration of organics produced by fermentation, improving productivity and performance. In this work, the preparation and characterization of new butanol-selective membranes was reported. The prepared membranes had a hollow fiber configuration and consisted of two dense selective layers: a first layer of PEBA and a second (outer) layer of PDMS. The membranes were tested to evaluate their separation performance in the selective removal of organics from a synthetic ABE solution. Membranes with various thicknesses were prepared in order to evaluate the effect of the PDMS protective layer on permeant fluxes and membrane selectivity. The mass transport phenomena in the pervaporation process were characterized using a resistances-in-series model. The experimental results showed that PEBA as the material of the dense separating layer is the most favorable in terms of selectivity towards butanol with respect to the other components of the feed stream. The addition of a protective layer of PDMS allows the sealing of possible pinholes; however, its thickness should be kept as small as possible since permeation fluxes decrease with increasing thickness of PDMS and this material also has greater selectivity towards acetone compared to other feed components.
Collapse
|
9
|
In-stream product recovery of p-coumaric acid heterologously produced: Implementation of a continuous liquid-liquid extraction assisted by hollow fiber membrane contactor. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Abstract
Abstract
In the last decade, there was observed a growing demand for both n-butanol as a potential fuel or fuel additive, and propylene as the only raw material for production of alcohol and other more bulky propylene chemical derivatives with faster growing outputs (polymers, propylene oxide, and acrylic acid). The predictable oilfield depletion and the European Green Deal adoption stimulated interest in alternative processes for n-butanol production, especially those involving bio-based materials. Their commercialization will promote additional market penetration of n-butanol for its application as a basic chemical. We analyze briefly the current status of two most advanced bio-based processes, i.e. ethanol–to-n-butanol and acetone–butanol–ethanol (ABE) fermentation. In the second part of the review, studies of n-butanol and ABE conversion to valuable products are considered with an emphasis on the most perspective catalytic systems and variants of the future processes realization.
Collapse
Affiliation(s)
- Larisa Pinaeva
- Department of Technology of Catalytic Processes, Boreskov Institute of Catalysis , Novosibirsk 630090 , Russia
| | - Alexandr Noskov
- Department of Technology of Catalytic Processes, Boreskov Institute of Catalysis , Novosibirsk 630090 , Russia
| |
Collapse
|
12
|
Process Development in Biosurfactant Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 181:195-233. [DOI: 10.1007/10_2021_195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Peculiar Response in the Co-Culture Fermentation of Leuconostoc mesenteroides and Lactobacillus plantarum for the Production of ABE Solvents. FERMENTATION 2021. [DOI: 10.3390/fermentation7040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two bacterial strains (CL11A and CL11D) that are capable of ABE fermentation, identified as Leuconostoc mesenteroides and Weissella cibari, were isolated from the soil surrounding the roots of bean plants. Another strain (ZM 3A), identified as Lactobacillus plantarum, which is capable of purely ethanolic fermentation was isolated from sugarcane. Glucose was used as a standard substrate to investigate the performance of these strains in mono—and co-culture fermentation for ABE production. The performance parameters employed in this study were substrate degradation rates, product and metabolite yields, pH changes and microbial growth rates. Both ABE isolates were capable of producing the three solvents but Leuconostoc mesenteroides had a higher specificity for ethanol than Weissella cibari. The co-culturing of Leuconostoc mesenteroides and Lactobacillus plantarum enhanced ethanol production at the expense of both acetone and butanol, and also influenced the final substrate consumption rate and product yield. The experiments indicated the potential of these niche environments for the isolation of ABE-producing microorganisms. This study contributes to the formulation of ideal microbial co-culture and consortia fermentation, which seeks to maximize the yield and production rates of favored products.
Collapse
|
14
|
Leonov PS, Flores-Alsina X, Gernaey KV, Sternberg C. Microbial biofilms in biorefinery - Towards a sustainable production of low-value bulk chemicals and fuels. Biotechnol Adv 2021; 50:107766. [PMID: 33965529 DOI: 10.1016/j.biotechadv.2021.107766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/11/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Harnessing the potential of biocatalytic conversion of renewable biomass into value-added products is still hampered by unfavorable process economics. This has promoted the use of biofilms as an alternative to overcome the limitations of traditional planktonic systems. In this paper, the benefits and challenges of biofilm fermentations are reviewed with a focus on the production of low-value bulk chemicals and fuels from waste biomass. Our study demonstrates that biofilm fermentations can potentially improve productivities and product yields by increasing biomass retention and allowing for continuous operation at high dilution rates. Furthermore, we show that biofilms can tolerate hazardous environments, which improve the conversion of crude biomass under substrate and product inhibitory conditions. Additionally, we present examples for the improved conversion of pure and crude substrates into bulk chemicals by mixed microbial biofilms, which can benefit from microenvironments in biofilms for synergistic multi-species reactions, and improved resistance to contaminants. Finally, we suggest the use of mathematical models as useful tools to supplement experimental insights related to the effects of physico-chemical and biological phenomena on the process. Major challenges for biofilm fermentations arise from inconsistent fermentation performance, slow reactor start-up, biofilm carrier costs and carrier clogging, insufficient biofilm monitoring and process control, challenges in reactor sterilization and scale-up, and issues in recovering dilute products. The key to a successful commercialization of the technology is likely going to be an interdisciplinary approach. Crucial research areas might include genetic engineering combined with the development of specialized biofilm reactors, biofilm carrier development, in-situ biofilm monitoring, model-based process control, mixed microbial biofilm technology, development of suitable biofilm reactor scale-up criteria, and in-situ product recovery.
Collapse
Affiliation(s)
- Pascal S Leonov
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark
| | - Xavier Flores-Alsina
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark
| | - Krist V Gernaey
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark
| | - Claus Sternberg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
15
|
Iyyappan J, Bharathiraja B, Vaishnavi A, Prathiba S. Overview of Current Developments in Biobutanol Production Methods and Future Perspectives. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2290:3-21. [PMID: 34009579 DOI: 10.1007/978-1-0716-1323-8_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Renewable biobutanol production is receiving more attention toward substituting fossil-based nonrenewable fuels. Biobutanol is recognized as the top most biofuel with extraordinary properties as compared with gasoline. The demand for biobutanol production is increasing enormously due to application in various industries as chemical substituent. Biobutanol production technology has attracted many researchers toward implementation of replacing cost-effective substrate and easy method to recover from the fermentation broth. Sugarcane bagasse, algal biomass, crude glycerol, and lignocellulosic biomass are potential cost-effective substrates which could replace consistent glucose-based substrates. The advantages and limitations of these substrates have been discussed in this chapter. Moreover, finding the integrated biobutanol recovery methods is an important factor parameter in production of biobutanol. This chapter also concentrated on possibilities and drawbacks of obtainable integrated biobutanol recovery methods. Thus, successful process involving cost-effective substrate and biobutanol recovery methods could help to implementation of biobutanol production industry. Overall, this chapter has endeavored to increase the viability of industrial production of biobutanol.
Collapse
Affiliation(s)
- J Iyyappan
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India.
| | - A Vaishnavi
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| | - S Prathiba
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| |
Collapse
|
16
|
Chen Y, Garg N, Luo H, Kontogeorgis GM, Woodley JM. Ionic liquid-based in situ product removal design exemplified for an acetone-butanol-ethanol fermentation. Biotechnol Prog 2021; 37:e3183. [PMID: 34129284 DOI: 10.1002/btpr.3183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
Selecting an appropriate separation technique is essential for the application of in situ product removal (ISPR) technology in biological processes. In this work, a three-stage systematic design method is proposed as a guide to integrate ionic liquid (IL)-based separation techniques into ISPR. This design method combines the selection of a suitable ISPR processing scheme, the optimal design of an IL-based liquid-liquid extraction (LLE) system followed by process simulation and evaluation. As a proof of concept, results for a conventional acetone-butanol-ethanol fermentation are presented (40,000 ton/year butanol production). In this application, ILs tetradecyl(trihexyl)phosphonium tetracyanoborate ([TDPh][TCB]) and tetraoctylammonium 2-methyl-1-naphthoate ([TOA] [MNaph]) are identified as the optimal solvents from computer-aided IL design (CAILD) method and reported experimental data, respectively. The dynamic simulation results for the fermentation process show that, the productivity of IL-based in situ (fed-batch) process and in situ (batch) process is around 2.7 and 1.8fold that of base case. Additionally, the IL-based in situ (fed-batch) process and in situ (batch) process also have significant energy savings (79.6% and 77.6%) when compared to the base case.
Collapse
Affiliation(s)
- Yuqiu Chen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Nipun Garg
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Hao Luo
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Georgios M Kontogeorgis
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
17
|
Monaghan TI, Baker JA, Robinson GK, Shepherd M. Parallel bioreactor system for accessible and reproducible anaerobic culture. Access Microbiol 2021; 3:000225. [PMID: 34151176 PMCID: PMC8208757 DOI: 10.1099/acmi.0.000225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/29/2021] [Indexed: 11/21/2022] Open
Abstract
When working with anaerobic bacteria it is important to have the capability to perform parallel bioreactor growth experiments that are both controllable and reproducible, although capital and consumables costs for commercially available systems are often prohibitively high. Hence, a three-vessel parallel bioreactor system was designed and constructed that has the capabilities for batch and fed batch processes and can also be set up for continuous culture at a fraction of the cost of commercial systems. This system carries over many of the same functionalities of those systems with a higher price point of entry, including in-line monitoring of temperature, pH, and redox poise. To validate the performance of this system Clostridium saccharoperbutylacetonicum was grown under conditions that promote ABE fermentation, an established industrial process used to produce the solvents acetone, butanol and ethanol. Measurements of cell density, pH, and redox poise all confirmed reproducible culture conditions for these parallel vessels, and solvent quantitation via GCMS verified consistent metabolic activities for the separate cultures. In future, this system will be of interest to researchers that require high performance parallel fermentation platforms but where commercial systems are not accessible.
Collapse
Affiliation(s)
- Taylor I Monaghan
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| | - Joseph A Baker
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| | - Gary K Robinson
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| | - Mark Shepherd
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| |
Collapse
|
18
|
In Situ Product Recovery of Bio-Based Industrial Platform Chemicals: A Guideline to Solvent Selection. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In situ product recovery (ISPR), in the form of an extractive fermentation process, can increase productivity and product titers in the sustainable production of platform chemicals. To establish a guideline for the development of industrially relevant production processes for such bio-based compounds, a wide screening was performed, mapping the potential of an extensive range of solvents and solvent mixtures. Besides solvent biocompatibility with Saccharomyces cerevisiae, distribution coefficients of three organic acids (protocatechuic acid, adipic acid and para-aminobenzoic acid) and four fragrance compounds (2-phenylethanol, geraniol, trans-cinnamaldehyde and β-ionone) were determined. While for highly hydrophobic fragrance compounds, multiple pure solvents were identified that were able to extract more than 98%, reactive extraction mixtures were proven effective for more challenging compounds including organic acids and hydrophilic alcohols. For example, a reactive mixture consisting of 12.5% of the extractant CYTOP 503 in canola oil was found to be biocompatible and showed superior extraction efficiency for the challenging compounds as compared to any biocompatible single solvent. This mapping of biocompatible solvents and solvent mixtures for the extraction of various classes of industrial platform chemicals can be a tremendous step forward in the development of extractive fermentations.
Collapse
|
19
|
Santos AG, de Albuquerque TL, Ribeiro BD, Coelho MAZ. In situ product recovery techniques aiming to obtain biotechnological products: A glance to current knowledge. Biotechnol Appl Biochem 2020; 68:1044-1057. [PMID: 32931049 DOI: 10.1002/bab.2024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/07/2020] [Indexed: 11/07/2022]
Abstract
Biotechnology and bioengineering techniques have been widely used in the production of biofuels, chemicals, pharmaceuticals, and food additives, being considered a "green" form of production because they use renewable and nonpolluting energy sources. On the other hand, in the traditional processes of production, the target product obtained by biotechnological routes must undergo several stages of purification, which makes these processes more expensive. In the past few years, some works have focused on processes that integrate fermentation to the recovery and purification steps necessary to obtain the final product required. This type of process is called in situ product recovery or extractive fermentation. However, there are some differences in the concepts of the techniques used in these bioprocesses. In this way, this review sought to compile relevant content on considerations and procedures that are being used in this field, such as evaporation, liquid-liquid extraction, permeation, and adsorption techniques. Also, the objective of this review was to approach the different configurations in the recent literature of the processes employed and the main bioproducts obtained, which can be used in the food, pharmaceutical, chemical, and/or fuel additives industry. We intended to elucidate concepts of these techniques, considered very recent, but which emerge as a promising alternative for the integration of bioprocesses.
Collapse
Affiliation(s)
- Ariane G Santos
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tiago L de Albuquerque
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bernardo D Ribeiro
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Alice Z Coelho
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Sustainable short-chain olefin production through simultaneous dehydration of mixtures of 1-butanol and ethanol over HZSM-5 and γ-Al2O3. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Enzymatic Esterification under High-pressure CO2 Conditions for in situ Recovery of Butyric Acid from Anaerobic Fermenters. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
González-Peñas H, Eibes G, Lu-Chau T, Moreira M, Lema J. Altered Clostridia response in extractive ABE fermentation with solvents of different nature. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Techno-Economic Analysis (TEA) of Different Pretreatment and Product Separation Technologies for Cellulosic Butanol Production from Oil Palm Frond. ENERGIES 2020. [DOI: 10.3390/en13010181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Among the driving factors for the high production cost of cellulosic butanol lies the pretreatment and product separation sections, which often demand high amounts of energy, chemicals, and water. In this study, techno-economic analysis of several pretreatments and product separation technologies were conducted and compared. Among the pretreatment technologies evaluated, low-moisture anhydrous ammonia (LMAA) pretreatment has shown notable potential with a pretreatment cost of $0.16/L butanol. Other pretreatment technologies evaluated were autohydrolysis, soaking in aqueous ammonia (SAA), and soaking in sodium hydroxide solution (NaOH) with pretreatment costs of $1.98/L, $3.77/L, and $0.61/L, respectively. Evaluation of different product separation technologies for acetone-butanol-ethanol (ABE) fermentation process have shown that in situ stripping has the lowest separation cost, which was $0.21/L. Other product separation technologies tested were dual extraction, adsorption, and membrane pervaporation, with the separation costs of $0.38/L, $2.25/L, and $0.45/L, respectively. The evaluations have shown that production of cellulosic butanol using combined LMAA pretreatment and in situ stripping or with dual extraction recorded among the lowest butanol production cost. However, dual extraction model has a total solvent productivity of approximately 6% higher than those of in situ stripping model.
Collapse
|
24
|
Vincent RH, Parent JS, Daugulis AJ. Using poly(vinyldodecylimidazolium bromide) for the in-situ product recovery of n-butanol. Biotechnol Prog 2019; 36:e2926. [PMID: 31587514 DOI: 10.1002/btpr.2926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
The mitigation of end-product inhibition during the biosynthesis of n-butanol is demonstrated for an in-situ product recovery (ISPR) system employing a poly(ionic liquid) (PIL) absorbent. The thermodynamic affinity of poly(vinyldodecylimidazolium bromide) [P(VC12 ImBr)] for n-butanol, acetone and ethanol versus water was measured at conditions experienced in a typical acetone-ethanol-butanol (ABE) fermentation. In addition to providing a high n-butanol partition coefficient (PC = 6.5) and selectivity (αBuOH/water = 46), P(VC12 ImBr) is shown to be biocompatible with Saccharomyces cerevisiae and Clostridium acetobutylicum. Furthermore, the diffusivity of n-butanol in a hydrated PIL provides absorption rates that support ISPR applications. Using a 5 wt% PIL phase fraction relative to the aqueous phase mass, P(VC12 ImBr) improved the volumetric productivity of a batch ABE ISPR process by 31% relative to a control fermentation. The concentration of n-butanol in the P(VC12 ImBr) phase was sufficient to increase the alcohol concentration from 1.5 wt% in the fermentation medium to 25 wt% in the saturated PIL, thereby facilitating downstream n-butanol recovery.
Collapse
Affiliation(s)
- Rachel H Vincent
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - J Scott Parent
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Andrew J Daugulis
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
25
|
A Feasibility Study of Cellulosic Isobutanol Production—Process Simulation and Economic Analysis. Processes (Basel) 2019. [DOI: 10.3390/pr7100667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Renewable liquid biofuels for transportation have recently attracted enormous global attention due to their potential to provide a sustainable alternative to fossil fuels. In recent years, the attention has shifted from first-generation bioethanol to the production of higher molecular weight alcohols, such as biobutanol, from cellulosic feedstocks. The economic feasibility of such processes depends on several parameters such as the cost of raw materials, the fermentation performance and the energy demand for the pretreatment of biomass and downstream processing. In this work, two conceptual process scenarios for isobutanol production, one with and one without integrated product removal from the fermentor by vacuum stripping, were developed and evaluated using SuperPro Designer®. In agreement with previous publications, it was concluded that the fermentation titer is a crucial parameter for the economic competitiveness of the process as it is closely related to the energy requirements for product purification. In the first scenario where the product titer was 22 g/L, the energy demand for downstream processing was 15.8 MJ/L isobutanol and the unit production cost of isobutanol was $2.24/L. The integrated product removal by vacuum stripping implemented in the second scenario was assumed to improve the isobutanol titer to 50 g/L. In this case, the energy demand for the product removal (electricity) and downstream processing were 1.8 MJ/L isobutanol and 10 MJ/L isobutanol, respectively, and the unit production cost was reduced to $1.42/L. The uncertainty associated with the choice of modeling and economic parameters was investigated by Monte Carlo simulation sensitivity analysis.
Collapse
|
26
|
El-Dalatony MM, Saha S, Govindwar SP, Abou-Shanab RA, Jeon BH. Biological Conversion of Amino Acids to Higher Alcohols. Trends Biotechnol 2019; 37:855-869. [DOI: 10.1016/j.tibtech.2019.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/21/2022]
|
27
|
Overview of Alternative Ethanol Removal Techniques for Enhancing Bioethanol Recovery from Fermentation Broth. Processes (Basel) 2019. [DOI: 10.3390/pr7070458] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study aims at reviewing the alternative techniques for bioethanol recovery, highlighting its advantages and disadvantages, and to investigate the technical challenges facing these alternatives to be widely used. The findings showed that the integration of these techniques with the fermentation process did not meet a large acceptance in the industrial sector. The majority of conducted studies were mainly focusing on ethanol recovery from aqueous standard solution rather than the investigation of these techniques performance in fermentation-separation coupled system. In this context, pervaporation has received more attention as a promising alternative to distillation. However, some challenges are facing the integration of these techniques in the industrial scale as the fouling problem in pervaporation, the toxicity of solvent in liquid extraction, energy consumption in vacuum fermentation. It was also found that there is a lack of the technical economic analysis for these techniques which may limit the spread of its application in the large scale. Currently, hybrid systems integrating distillation with other alternative techniques are considered as an innovative solution to reduce the high cost of the distillation process and the low separation efficiency of the alternatives techniques.
Collapse
|
28
|
Fed-batch acetone-butanol-ethanol fermentation using immobilized Clostridium acetobutylicum in calcium alginate beads. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-018-0232-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Reviving the Weizmann process for commercial n-butanol production. Nat Commun 2018; 9:3682. [PMID: 30206218 PMCID: PMC6134114 DOI: 10.1038/s41467-018-05661-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
Developing a commercial process for the biological production of n-butanol is challenging as it needs to combine high titer, yield, and productivities. Here we engineer Clostridium acetobutylicum to stably and continuously produce n-butanol on a mineral media with glucose as sole carbon source. We further design a continuous process for fermentation of high concentration glucose syrup using in situ extraction of alcohols by distillation under low pressure and high cell density cultures to increase the titer, yield, and productivity of n-butanol production to the level of 550 g/L, 0.35 g/g, and 14 g/L/hr, respectively. This process provides a mean to produce n-butanol at performance levels comparable to that of corn wet milling ethanol plants using yeast as a biocatalyst. It may hold the potential to be scaled-up at pilot and industrial levels for the commercial production of n-butanol. Organic solvent n-butanol is produced mainly by petrochemical method. Here, the authors revive the historical Weizmann process by engineering Clostridium acetobutylicum strain and developing low pressure distillation and high cell density cultures for n-butanol continuous production at high-yield titer and productivity.
Collapse
|
30
|
Jung HM, Lee JY, Lee JH, Oh MK. Improved production of isobutanol in pervaporation-coupled bioreactor using sugarcane bagasse hydrolysate in engineered Enterobacter aerogenes. BIORESOURCE TECHNOLOGY 2018; 259:373-380. [PMID: 29579689 DOI: 10.1016/j.biortech.2018.03.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
A process of isobutanol production from sugarcane bagasse hydrolysates in Enterobacter aerogenes was developed here with a pervaporation-integrated procedure. Isobutanol pathway was overexpressed in a mutant strain with eliminated byproduct-forming enzymes (LdhA, BudA, and PflB). A glucose-and-xylose-coconsuming ptsG mutant was constructed for effective utilization of lignocellulosic biomass. Toxic effects of isobutanol were alleviated by in situ recovery via a pervaporation procedure. Compared to single-batch fermentation, cell growth and isobutanol titer were improved by 60% and 100%, respectively, in the pervaporation-integrated fermentation process. A lab-made cross-linked polydimethylsiloxane membrane was cast on polyvinylidene fluoride and used in the pervaporation process. The membrane-penetrating condensate contained 55-226 g m-2 h-1 isobutanol with 6-25 g L-1 ethanol after separation. This study offers improved fermentative production of isobutanol from lignocellulosic biomass with a pervaporation procedure.
Collapse
Affiliation(s)
- Hwi-Min Jung
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Ju Yeon Lee
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
31
|
High-flux POMS organophilic pervaporation for ABE recovery applied in fed-batch and continuous set-ups. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|