1
|
Chen X, Xiao L, Niu J, Wang Y, Zhang X, Gong L, Yao F, Xu K. Early succession of biofilm bacterial communities in newly built drinking water pipelines via multi-area analysis. Appl Microbiol Biotechnol 2023; 107:3817-3828. [PMID: 37074383 DOI: 10.1007/s00253-023-12517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/07/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
Biofilms inhabiting pipeline walls are critical to drinking water quality and safety. With massive pipeline replacement underway, however, biofilm formation process in newly built pipes and its effects on water quality are unclear. Moreover, differences and connections between biofilms in newly built and old pipes are unknown. In this study, early succession (≤ 120 days) of biofilm bacterial communities (abundance and diversity) in upper, middle and bottom areas of a newly built cement-lined ductile iron pipeline were evaluated using improved Propella™ biofilm reactor and multi-area analysis. A comparison with old pipelines (grey cast iron, 10 years) was performed. In the newly built pipeline, the abundance of biofilm bacteria did not change significantly between 40 and 80 days, but increased significantly between 80 and 120 days. The biofilm bacterial abundance (per unit area) in the bottom area was always higher than that in the upper and middle areas. Based on alpha diversity index and PCoA results, biofilm bacterial community richness, diversity and composition did not change significantly during the 120-day operation. Besides, biofilm shedding from the walls of newly built pipeline significantly increased bacterial abundance in the outlet water. Opportunistic pathogen-containing genera, such as Burkholderia, Acinetobacter and Legionella, were identified in both water and biofilm samples from newly built pipelines. The comparison between new and old pipelines suggested a higher bacterial abundance per unit area at the middle and bottom areas in old pipelines. Moreover, the bacterial community composition of biofilms in old pipelines was similar to that of newly built pipelines. These results contribute to accurate prediction and management of biofilm microbial communities in drinking water pipelines, ensuring the biosafety of drinking water. KEY POINTS: • Biofilm bacterial communities in different areas of pipe wall were revealed. • The abundance of biofilm bacteria increased significantly between 80 and 120 days. • Biofilm bacterial community compositions of newly built and old pipes were similar.
Collapse
Affiliation(s)
- Xiaochen Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, No.2 Wulongjiangbei Road, Fuzhou, 350108, China
| | - Liang Xiao
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, No.2 Wulongjiangbei Road, Fuzhou, 350108, China
| | - Jia Niu
- Center of Safe and Energy-Saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, No.33 Xuefunan Road, Fuzhou, 350118, China.
| | - Yue Wang
- Fuzhou Water Supply Co, Ltd., No.104 Dongjie, Fuzhou, 350001, China
- Fuzhou Water Quality Monitoring Co., Ltd, No.104 Dongjie, Fuzhou, 350001, China
| | - Xiaomin Zhang
- Fuzhou Water Supply Co, Ltd., No.104 Dongjie, Fuzhou, 350001, China
- Fuzhou Water Quality Monitoring Co., Ltd, No.104 Dongjie, Fuzhou, 350001, China
| | - Longcong Gong
- Fuzhou Water Supply Co, Ltd., No.104 Dongjie, Fuzhou, 350001, China
| | - Fengbing Yao
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, No.2 Wulongjiangbei Road, Fuzhou, 350108, China
| | - Kaiqin Xu
- College of Civil Engineering, Fuzhou University, No.2 Wulongjiangbei Road, Fuzhou, 350108, China
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, 305-8506, Japan
| |
Collapse
|
2
|
Abstract
Biodiesel is a promising alternative to fossil fuels and mainly produced from oils/fat through the (trans)esterification process. To enhance the reaction efficiency and simplify the production process, various catalysts have been introduced for biodiesel synthesis. Recently, the use of bio-derived catalysts has attracted more interest due to their high catalytic activity and ecofriendly properties. These catalysts include alkali catalysts, acid catalysts, and enzymes (biocatalysts), which are (bio)synthesized from various natural sources. This review summarizes the latest findings on these bio-derived catalysts, as well as their source and catalytic activity. The advantages and disadvantages of these catalysts are also discussed. These bio-based catalysts show a promising future and can be further used as a renewable catalyst for sustainable biodiesel production.
Collapse
|