1
|
Chen F, Li C, Liu J, Dong Y, Chen J, Zhou Q. Crosslinked modified decellularized rabbit conjunctival stroma for reconstruction of tissue-engineered conjunctiva in vitro. Biomed Mater 2023; 19:015001. [PMID: 37917998 DOI: 10.1088/1748-605x/ad08e0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/01/2023] [Indexed: 11/04/2023]
Abstract
Conjunctival reconstruction is an essential part of ocular surface restoration, especially in severe conjunctival disorders. Decellularized conjunctival tissues have been used in tissue engineering. In this study, we investigated the feasibility of constructing tissue-engineered conjunctiva using stem cell (human amniotic epithelial cells, hAECs), and cross-linked modified decellularized rabbit conjunctival stroma (DRCS-Asp-hEGF), and decellularized rabbit conjunctiva stroma (DRCS). With phospholipase A2 and sodium dodecyl, DRCS were nearly DNA-free, structurally intact and showed no cytotoxic effectsin vitro, as confirmed by DNA quantification, histology, and immunofluorescence. The results of Fourier transform infrared, Alcian blue staining and human epidermal growth factor (hEGF) release assays showed that DRCS-Asp-hEGF was successfully prepared via crosslinking with aspartic acid (Asp) and modified by hEGF at pH 7.7. The hAECs were positive for octamer-binding transcription factor-4 and ABCG2 cell markers. The hAECs were directly placed on the DRCS and DRCS-Asp-hEGF for five days respectively. Tissue-engineered conjunctiva was constructedin vitrofor five days, and the fluorescence staining results showed that hAECs grew in monolayers on DRCS-Asp-hEGF and DRCS. Flow cytometry results showed that compared with DRCS, the number of apoptotic cells stained in DRCS-Asp-hEGF was small, 86.70 ± 0.79% of the cells survived, and 87.59 ± 1.43% of the cells were in the G1 phase of DNA synthesis. Electron microscopy results showed that desmosome junction structures, which were similar to the native conjunctival tissue, were formed between cells and the matrix in the DRCS-Asp-hEGF.
Collapse
Affiliation(s)
- Fangyuan Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Chaoqun Li
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Jingwen Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Yuying Dong
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Jian Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Qing Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| |
Collapse
|
2
|
Riggs MJ, Sheridan SD, Rao RR. ARHGDIA Confers Selective Advantage to Dissociated Human Pluripotent Stem Cells. Stem Cells Dev 2021; 30:705-713. [PMID: 34036793 PMCID: PMC8309423 DOI: 10.1089/scd.2021.0079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) have generated significant interest in the scientific community based on their potential applications in regenerative medicine. However, numerous research groups have reported a propensity for genomic alterations during hPSC culture that poses concerns for basic research and clinical applications. Work from our laboratory and others has demonstrated that amplification of chromosomal regions is correlated with increased gene expression. To date, the phenotypic association of common genomic alterations remains unclear and is a cause for concern during clinical use. In this study, we focus on trisomy 17 and a list of candidate genes with increased gene expression to hypothesize that overexpressing 17q25 located ARHGDIA will confer selective advantage to hPSCs. HPSC lines overexpressing ARHGDIA exhibited culture dominance in co-cultures of overexpression lines with nonoverexpression lines. Furthermore, during low-density seeding, we demonstrate increased clonality of our ARHGDIA lines against matched controls. A striking observation is that we could reduce this selective advantage by varying the hPSC culture conditions with the addition of ROCK inhibitor (ROCKi). This work is unique in (1) demonstrating a novel gene that confers selective advantage to hPSCs when overexpressed and may help explain a common trisomy dominance, (2) providing a selection model for studying culture conditions that reduce the appearance of genomically altered hPSCs, and (3) aiding in elucidation of a mechanism that may act as a molecular switch during culture adaptation.
Collapse
Affiliation(s)
- Marion J Riggs
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven D Sheridan
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Raj R Rao
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
3
|
Biointerface Materials for Cellular Adhesion: Recent Progress and Future Prospects. ACTUATORS 2020. [DOI: 10.3390/act9040137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While many natural instances of adhesion between cells and biological macromolecules have been elucidated, understanding how to mimic these adhesion events remains to be a challenge. Discovering new biointerface materials that can provide an appropriate environment, and in some cases, also providing function similar to the body’s own extracellular matrix, would be highly beneficial to multiple existing applications in biomedical and biological engineering, and provide the necessary insight for the advancement of new technology. Such examples of current applications that would benefit include biosensors, high-throughput screening and tissue engineering. From a mechanical perspective, these biointerfaces would function as bioactuators that apply focal adhesion points onto cells, allowing them to move and migrate along a surface, making biointerfaces a very relevant application in the field of actuators. While it is evident that great strides in progress have been made in the area of synthetic biointerfaces, we must also acknowledge their current limitations as described in the literature, leading to an inability to completely function and dynamically respond like natural biointerfaces. In this review, we discuss the methods, materials and, possible applications of biointerface materials used in the current literature, and the trends for future research in this area.
Collapse
|
4
|
Grace HE, Galdun P, Lesnefsky EJ, West FD, Iyer S. mRNA Reprogramming of T8993G Leigh's Syndrome Fibroblast Cells to Create Induced Pluripotent Stem Cell Models for Mitochondrial Disorders. Stem Cells Dev 2019; 28:846-859. [PMID: 31017045 DOI: 10.1089/scd.2019.0045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Early molecular and developmental events impacting many incurable mitochondrial disorders are not fully understood and require generation of relevant patient- and disease-specific stem cell models. In this study, we focus on the ability of a nonviral and integration-free reprogramming method for deriving clinical-grade induced pluripotent stem cells (iPSCs) specific to Leigh's syndrome (LS), a fatal neurodegenerative mitochondrial disorder of infants. The cause of fatality could be due to the presence of high abundance of mutant mitochondrial DNA (mtDNA) or decline in respiration levels, thus affecting early molecular and developmental events in energy-intensive tissues. LS patient fibroblasts (designated LS1 in this study), carrying a high percentage of mutant T8993G mtDNA, were reprogrammed using a combined mRNA-miRNA nonviral approach to generate human iPSCs (hiPSCs). The LS1-hiPSCs were evaluated for their self-renewal, embryoid body (EB) formation, and differentiation potential, using immunocytochemistry and gene expression profiling methods. Sanger sequencing and next-generation sequencing approaches were used to detect the mutation and quantify the percentage of mutant mtDNA in the LS1-hiPSCs and differentiated derivatives. Reprogrammed LS-hiPSCs expressed pluripotent stem cell markers including transcription factors OCT4, NANOG, and SOX2 and cell surface markers SSEA4, TRA-1-60, and TRA-1-81 at the RNA and protein level. LS1-hiPSCs also demonstrated the capacity for self-renewal and multilineage differentiation into all three embryonic germ layers. EB analysis demonstrated impaired differentiation potential in cells carrying high percentage of mutant mtDNA. Next-generation sequencing analysis confirmed the presence of high abundance of T8993G mutant mtDNA in the patient fibroblasts and their reprogrammed and differentiated derivatives. These results represent for the first time the derivation and characterization of a stable nonviral hiPSC line reprogrammed from a LS patient fibroblast carrying a high abundance of mutant mtDNA. These outcomes are important steps toward understanding disease origins and developing personalized therapies for patients suffering from mitochondrial diseases.
Collapse
Affiliation(s)
- Harrison E Grace
- 1 Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,2 Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Patrick Galdun
- 3 Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- 3 Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia.,4 Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia.,5 Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia.,6 Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Franklin D West
- 1 Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,2 Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Shilpa Iyer
- 7 Department of Biological Sciences, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
5
|
Alsayegh KN, Sheridan SD, Iyer S, Rao RR. Knockdown of CDK2AP1 in human embryonic stem cells reduces the threshold of differentiation. PLoS One 2018; 13:e0196817. [PMID: 29734353 PMCID: PMC5937771 DOI: 10.1371/journal.pone.0196817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/22/2018] [Indexed: 01/08/2023] Open
Abstract
Recent studies have suggested a role for the Cyclin Dependent Kinase-2 Associated Protein 1 (CDK2AP1) in stem cell differentiation and self-renewal. In studies with mouse embryonic stem cells (mESCs) derived from generated mice embryos with targeted deletion of the Cdk2ap1 gene, CDK2AP1 was shown to be required for epigenetic silencing of Oct4 during differentiation, with deletion resulting in persistent self-renewal and reduced differentiation potential. Differentiation capacity was restored in these cells following the introduction of a non-phosphorylatible form of the retinoblastoma protein (pRb) or exogenous Cdk2ap1. In this study, we investigated the role of CDK2AP1 in human embryonic stem cells (hESCs). Using a shRNA to reduce its expression in hESCs, we found that CDK2AP1 knockdown resulted in a significant reduction in the expression of the pluripotency genes, OCT4 and NANOG. We also found that CDK2AP1 knockdown increased the number of embryoid bodies (EBs) formed when differentiation was induced. In addition, the generated EBs had significantly higher expression of markers of all three germ layers, indicating that CDK2AP1 knockdown enhanced differentiation. CDK2AP1 knockdown also resulted in reduced proliferation and reduced the percentage of cells in the S phase and increased cells in the G2/M phase of the cell cycle. Further investigation revealed that a higher level of p53 protein was present in the CDK2AP1 knockdown hESCs. In hESCs in which p53 and CDK2AP1 were simultaneously downregulated, OCT4 and NANOG expression was not affected and percentage of cells in the S phase of the cell cycle was not reduced. Taken together, our results indicate that the knockdown of CDK2AP1 in hESCs results in increased p53 and enhances differentiation and favors it over a self-renewal fate.
Collapse
Affiliation(s)
- Khaled N. Alsayegh
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Steven D. Sheridan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Shilpa Iyer
- Department of Biological Sciences, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States of America
- * E-mail: (RR); (SI)
| | - Raj Raghavendra Rao
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, United States of America
- * E-mail: (RR); (SI)
| |
Collapse
|
6
|
Robb KP, Shridhar A, Flynn LE. Decellularized Matrices As Cell-Instructive Scaffolds to Guide Tissue-Specific Regeneration. ACS Biomater Sci Eng 2017; 4:3627-3643. [PMID: 33429606 DOI: 10.1021/acsbiomaterials.7b00619] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Decellularized scaffolds are promising clinically translational biomaterials that can be applied to direct cell responses and promote tissue regeneration. Bioscaffolds derived from the extracellular matrix (ECM) of decellularized tissues can naturally mimic the complex extracellular microenvironment through the retention of compositional, biomechanical, and structural properties specific to the native ECM. Increasingly, studies have investigated the use of ECM-derived scaffolds as instructive substrates to recapitulate properties of the stem cell niche and guide cell proliferation, paracrine factor production, and differentiation in a tissue-specific manner. Here, we review the application of decellularized tissue scaffolds as instructive matrices for stem or progenitor cells, with a focus on the mechanisms through which ECM-derived scaffolds can mediate cell behavior to promote tissue-specific regeneration. We conclude that although additional preclinical studies are required, ECM-derived scaffolds are a promising platform to guide cell behavior and may have widespread clinical applications in the field of regenerative medicine.
Collapse
Affiliation(s)
- Kevin P Robb
- Biomedical Engineering Graduate Program, The University of Western Ontario, Claudette MacKay Lassonde Pavilion, London, Ontario, Canada N6A 5B9
| | - Arthi Shridhar
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, Thompson Engineering Building, London, Ontario, Canada N6A 5B9
| | - Lauren E Flynn
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, Thompson Engineering Building, London, Ontario, Canada N6A 5B9.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
7
|
Sachs PC, Mollica PA, Bruno RD. Tissue specific microenvironments: a key tool for tissue engineering and regenerative medicine. J Biol Eng 2017; 11:34. [PMID: 29177006 PMCID: PMC5688702 DOI: 10.1186/s13036-017-0077-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022] Open
Abstract
The accumulated evidence points to the microenvironment as the primary mediator of cellular fate determination. Comprised of parenchymal cells, stromal cells, structural extracellular matrix proteins, and signaling molecules, the microenvironment is a complex and synergistic edifice that varies tissue to tissue. Furthermore, it has become increasingly clear that the microenvironment plays crucial roles in the establishment and progression of diseases such as cardiovascular disease, neurodegeneration, cancer, and ageing. Here we review the historical perspectives on the microenvironment, and how it has directed current explorations in tissue engineering. By thoroughly understanding the role of the microenvironment, we can begin to correctly manipulate it to prevent and cure diseases through regenerative medicine techniques.
Collapse
Affiliation(s)
- Patrick C Sachs
- Medical Diagnostic and Translational Sciences, College of Health Science, Old Dominion University, Norfolk, VA 23529 USA
| | - Peter A Mollica
- Medical Diagnostic and Translational Sciences, College of Health Science, Old Dominion University, Norfolk, VA 23529 USA
| | - Robert D Bruno
- Medical Diagnostic and Translational Sciences, College of Health Science, Old Dominion University, Norfolk, VA 23529 USA
| |
Collapse
|
8
|
Coelho de Oliveira VC, Silva dos Santos D, Vairo L, Kasai Brunswick TH, Pimentel LAS, Carvalho AB, Campos de Carvalho AC, Goldenberg RCDS. Hair follicle-derived mesenchymal cells support undifferentiated growth of embryonic stem cells. Exp Ther Med 2017; 13:1779-1788. [PMID: 28565767 PMCID: PMC5443186 DOI: 10.3892/etm.2017.4195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/13/2017] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to investigate whether feeder layers composed of human hair follicle-derived mesenchymal stem cells (hHFDCs) are able to support human embryonic stem cells (hESCs). hHFDCs and mouse embryonic fibroblasts (MEFs) were isolated and cultured in Dulbecco's modified Eagle's medium (DMEM)/F-12 and low-glucose DMEM, respectively. hHFDCs were passaged three times and subsequently characterized. hHFDCs and MEFs were mitotically inactivated with mitomycin C for 3 h prior to co-culture with H9-hESCs. hESCs were initially established on a mouse feeder layer, subsequently transferred onto a human feeder layer and split every 5 days. Cell morphology, expression of specific 'undifferentiation' markers and growth factors, and the differentiation capacity of hESCs grown on the hHFDC feeder layer were analyzed. hHFDCs are adherent to plastic, possess the classic mesenchymal stem cell phenotype [they express cluster of differentiation (CD)90, CD73 and CD105] and are able to differentiate into adipocytes, chondroblasts and osteocytes, indicating that these cells are multipotent. Population-doubling time analysis revealed that hHFDCs rapidly proliferate over 34.5 h. As a feeder layer, hHFDC behaved similarly to MEF in maintaining the morphology of hESCs. The results of alkaline phosphatase activity, reverse transcription-quantitative polymerase chain reaction analysis of the expression of pluripotency transcription factors [octamer-binding transcription factor 4 (Oct4), Nanog and sex determining region Y-box 2], and immunofluorescence assays of markers (stage-specific embryonic antigen-4 and Oct4) in hESCs co-cultured over hHFDC, indicated that the undifferentiated state of hESCs was preserved. No change in the level of growth factor transcripts (bone morphogenetic protein 4, fibroblast growth factor-2, vascular endothelial growth factor, Pigment epithelium-derived factor and transforming growth factor-β1) was detected for either feeder layer prior to or following inactivation. Similar phenotypes of embryoid body formation, size and morphology were observed in the hHFDC and MEF feeders. In conclusion, hHFDC maintained hESCs in an undifferentiated state comparable to MEF in standard conditions, which may be an important finding regarding the establishment of stem cell-based translational applications.
Collapse
Affiliation(s)
| | - Danúbia Silva dos Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Leandro Vairo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Tais Hanae Kasai Brunswick
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | | | - Adriana Bastos Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | | | | |
Collapse
|
9
|
Bioengineered Bruch's-like extracellular matrix promotes retinal pigment epithelial differentiation. Biochem Biophys Rep 2017; 10:178-185. [PMID: 28955745 PMCID: PMC5614661 DOI: 10.1016/j.bbrep.2017.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/21/2017] [Accepted: 03/26/2017] [Indexed: 11/21/2022] Open
Abstract
In the eye, the retinal pigment epithelium (RPE) adheres to a complex protein matrix known as Bruch's membrane (BrM). The aim of this study was to provide enriched conditions for RPE cell culture through the production of a BrM-like matrix. Our hypothesis was that a human RPE cell line would deposit an extracellular matrix (ECM) resembling BrM. The composition and structure of ECM deposited by ARPE19 cells (ARPE19-ECM) was characterized. To produce ARPE19-ECM, ARPE19 cells were cultured in the presence dextran sulphate. ARPE19-ECM was decellularized using deoxycholate and characterized by immunostaining and western blot analysis. Primary human RPE and induced pluripotent stem cells were seeded onto ARPE19-ECM or geltrex coated surfaces and examined by microscopy or RT-PCR. Culture of ARPE19 cells with dextran sulphate promoted nuclear localization of SOX2, formation of tight junctions and deposition of ECM. ARPE19 cells deposited ECM proteins found in the inner layers of BrM, including fibronectin, vitronectin, collagens IV and V as well as laminin-alpha-5, but not those found in the middle elastic layer (elastin) or the outer layers (collagen VI). ARPE19-ECM promoted pigmentation in human RPE and pluripotent stem cell cultures. Expression of RPE65 was significantly increased on ARPE19-ECM compared with geltrex in differentiating pluripotent stem cell cultures. ARPE19 cells deposit ECM with a composition and structure similar to BrM in the retina. Molecular cues present in ARPE19-ECM promote the acquisition and maintenance of the RPE phenotype. Together, these results demonstrate a simple method for generating a BrM-like surface for enriched RPE cell cultures. Macromolecular crowding promoted deposition of extracellular matrix by ARPE19 cells. ARPE19 cells deposited matrix proteins found in the inner layers of Bruch's membrane. ARPE19-ECM displayed similar microstructure to Bruch's membrane. ARPE19-ECM promoted pigmentation in human retinal pigment epithelial cell cultures. ARPE19-ECM promoted RPE differentiation from pluripotent stem cells.
Collapse
|
10
|
Isyar M, Yilmaz I, Yasar Sirin D, Yalcin S, Guler O, Mahirogullari M. A practical way to prepare primer human chondrocyte culture. J Orthop 2016; 13:162-7. [PMID: 27408489 DOI: 10.1016/j.jor.2016.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/08/2016] [Accepted: 03/06/2016] [Indexed: 01/07/2023] Open
Abstract
Biological cartilage repair is one of the most important targets for orthopedic surgeons currently. For this purpose, it is mandatory to know how to prepare a chondrocyte culture. In this study, our purpose was to introduce a method enabling orthopedic surgeons to practice their knowledge and skills on molecular experimental setup at cellular level, based on our experiences from previous pilot studies. Thus, we believe it will encourage orthopedic surgeons.
Collapse
Affiliation(s)
- Mehmet Isyar
- Istanbul Medipol University School of Medicine, Department of Orthopaedic and Traumatology, 34214 Istanbul, Turkey
| | - Ibrahim Yilmaz
- Republic of Turkey, Ministry of Health, State Hospital, Department of Pharmacovigilance and Rational Drug Use Team, 59100 Tekirdag, Turkey
| | - Duygu Yasar Sirin
- Namik Kemal University Faculty of Science, Deparment of Molecular Biology and Genetics, 59100 Tekirdag, Turkey
| | - Sercan Yalcin
- Istanbul Medipol University School of Medicine, Department of Orthopaedic and Traumatology, 34214 Istanbul, Turkey
| | - Olcay Guler
- Istanbul Medipol University School of Medicine, Department of Orthopaedic and Traumatology, 34214 Istanbul, Turkey
| | - Mahir Mahirogullari
- Istanbul Medipol University School of Medicine, Department of Orthopaedic and Traumatology, 34214 Istanbul, Turkey
| |
Collapse
|
11
|
Alsayegh KN, Gadepalli VS, Iyer S, Rao RR. Knockdown of CDK2AP1 in primary human fibroblasts induces p53 dependent senescence. PLoS One 2015; 10:e0120782. [PMID: 25785833 PMCID: PMC4365013 DOI: 10.1371/journal.pone.0120782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/06/2015] [Indexed: 12/30/2022] Open
Abstract
Cyclin Dependent Kinase-2 Associated Protein-1 (CDK2AP1) is known to be a tumor suppressor that plays a role in cell cycle regulation by sequestering monomeric CDK2, and targeting it for proteolysis. A reduction of CDK2AP1 expression is considered to be a negative prognostic indicator in patients with oral squamous cell carcinoma and also associated with increased invasion in human gastric cancer tissue. CDK2AP1 overexpression was shown to inhibit growth, reduce invasion and increase apoptosis in prostate cancer cell lines. In this study, we investigated the effect of CDK2AP1 downregulation in primary human dermal fibroblasts. Using a short-hairpin RNA to reduce its expression, we found that knockdown of CDK2AP1in primary human fibroblasts resulted in reduced proliferation and in the induction of senescence associated beta-galactosidase activity. CDK2AP1 knockdown also resulted in a significant reduction in the percentage of cells in the S phase and an accumulation of cells in the G1 phase of the cell cycle. Immunocytochemical analysis also revealed that the CDK2AP1 knockdown significantly increased the percentage of cells that exhibited γ-H2AX foci, which could indicate presence of DNA damage. CDK2AP1 knockdown also resulted in increased mRNA levels of p53, p21, BAX and PUMA and p53 protein levels. In primary human fibroblasts in which p53 and CDK2AP1 were simultaneously downregulated, there was: (a) no increase in senescence associated beta-galactosidase activity, (b) decrease in the number of cells in the G1-phase and increase in number of cells in the S-phase of the cell cycle, and (c) decrease in the mRNA levels of p21, BAX and PUMA when compared with CDK2AP1 knockdown only fibroblasts. Taken together, this suggests that the observed phenotype is p53 dependent. We also observed a prominent increase in the levels of ARF protein in the CDK2AP1 knockdown cells, which suggests a possible role of ARF in p53 stabilization following CDK2AP1 knockdown. Altogether, our results show that knockdown of CDK2AP1 in primary human fibroblasts reduced proliferation and induced premature senescence, with the observed phenotype being p53 dependent.
Collapse
Affiliation(s)
- Khaled N. Alsayegh
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, United States of America
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Venkat S. Gadepalli
- Integrated Life Sciences Program, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Shilpa Iyer
- Center for the Study of Biological Complexity, Life Sciences Program, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Raj R. Rao
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, United States of America
- Integrated Life Sciences Program, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Life Sciences Program, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Goh SK, Olsen P, Banerjee I. Extracellular matrix aggregates from differentiating embryoid bodies as a scaffold to support ESC proliferation and differentiation. PLoS One 2013; 8:e61856. [PMID: 23637919 PMCID: PMC3630218 DOI: 10.1371/journal.pone.0061856] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/15/2013] [Indexed: 01/15/2023] Open
Abstract
Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications.
Collapse
Affiliation(s)
- Saik-Kia Goh
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Phillip Olsen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ipsita Banerjee
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Bioengineering embryonic stem cell microenvironments for the study of breast cancer. Int J Mol Sci 2011; 12:7662-91. [PMID: 22174624 PMCID: PMC3233430 DOI: 10.3390/ijms12117662] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most prevalent disease amongst women worldwide and metastasis is the main cause of death due to breast cancer. Metastatic breast cancer cells and embryonic stem (ES) cells display similar characteristics. However, unlike metastatic breast cancer cells, ES cells are nonmalignant. Furthermore, embryonic microenvironments have the potential to convert metastatic breast cancer cells into a less invasive phenotype. The creation of in vitro embryonic microenvironments will enable better understanding of ES cell-breast cancer cell interactions, help elucidate tumorigenesis, and lead to the restriction of breast cancer metastasis. In this article, we will present the characteristics of breast cancer cells and ES cells as well as their microenvironments, importance of embryonic microenvironments in inhibiting tumorigenesis, convergence of tumorigenic and embryonic signaling pathways, and state of the art in bioengineering embryonic microenvironments for breast cancer research. Additionally, the potential application of bioengineered embryonic microenvironments for the prevention and treatment of invasive breast cancer will be discussed.
Collapse
|