1
|
Li Y, Song W, Yin X, Rao S, Zhang Q, Zhou J, Li J, Du G, Liu S. Enhanced catalytic performance of thermophilic GH11 xylanase by fusing carbohydrate-binding module 9-2 and linker for better synergistic degradation of wheat bran. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Kim JY, Nong G, Rice JD, Gallo M, Preston JF, Altpeter F. In planta production and characterization of a hyperthermostable GH10 xylanase in transgenic sugarcane. PLANT MOLECULAR BIOLOGY 2017; 93:465-478. [PMID: 28005227 DOI: 10.1007/s11103-016-0573-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/04/2016] [Indexed: 06/06/2023]
Abstract
Sugarcane (Saccharum sp. hybrids) is one of the most efficient and sustainable feedstocks for commercial production of fuel ethanol. Recent efforts focus on the integration of first and second generation bioethanol conversion technologies for sugarcane to increase biofuel yields. This integrated process will utilize both the cell wall bound sugars of the abundant lignocellulosic sugarcane residues in addition to the sucrose from stem internodes. Enzymatic hydrolysis of lignocellulosic biomass into its component sugars requires significant amounts of cell wall degrading enzymes. In planta production of xylanases has the potential to reduce costs associated with enzymatic hydrolysis but has been reported to compromise plant growth and development. To address this problem, we expressed a hyperthermostable GH10 xylanase, xyl10B in transgenic sugarcane which displays optimal catalytic activity at 105 °C and only residual catalytic activity at temperatures below 70 °C. Transgene integration and expression in sugarcane were confirmed by Southern blot, RT-PCR, ELISA and western blot following biolistic co-transfer of minimal expression cassettes of xyl10B and the selectable neomycin phosphotransferase II. Xylanase activity was detected in 17 transgenic lines with a fluorogenic xylanase activity assay. Up to 1.2% of the total soluble protein fraction of vegetative progenies with integration of chloroplast targeted expression represented the recombinant Xyl10B protein. Xyl10B activity was stable in vegetative progenies. Tissues retained 75% of the xylanase activity after drying of leaves at 35 °C and a 2 month storage period. Transgenic sugarcane plants producing Xyl10B did not differ from non-transgenic sugarcane in growth and development under greenhouse conditions. Sugarcane xylan and bagasse were used as substrate for enzymatic hydrolysis with the in planta produced Xyl10B. TLC and HPLC analysis of hydrolysis products confirmed the superior catalytic activity and stability of the in planta produced Xyl10B with xylobiose as a prominent degradation product. These findings will contribute to advancing consolidated processing of lignocellulosic sugarcane biomass.
Collapse
Affiliation(s)
- Jae Yoon Kim
- Plant Molecular and Cellular Biology Program, Agronomy Department, Genetics Institute, University of Florida - IFAS, Gainesville, FL, USA
- Division of Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Guang Nong
- Department of Microbiology and Cell Science, University of Florida - IFAS, Gainesville, FL, USA
| | - John D Rice
- Department of Microbiology and Cell Science, University of Florida - IFAS, Gainesville, FL, USA
| | - Maria Gallo
- Plant Molecular and Cellular Biology Program, Agronomy Department, Genetics Institute, University of Florida - IFAS, Gainesville, FL, USA
- Delaware Valley University, Doylestown, PA, USA
| | - James F Preston
- Department of Microbiology and Cell Science, University of Florida - IFAS, Gainesville, FL, USA
| | - Fredy Altpeter
- Plant Molecular and Cellular Biology Program, Agronomy Department, Genetics Institute, University of Florida - IFAS, Gainesville, FL, USA.
| |
Collapse
|
3
|
Karnaouri A, Matsakas L, Topakas E, Rova U, Christakopoulos P. Development of Thermophilic Tailor-Made Enzyme Mixtures for the Bioconversion of Agricultural and Forest Residues. Front Microbiol 2016; 7:177. [PMID: 26909078 PMCID: PMC4754399 DOI: 10.3389/fmicb.2016.00177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022] Open
Abstract
Even though the main components of all lignocellulosic feedstocks include cellulose, hemicellulose, as well as the protective lignin matrix, there are some differences in structure, such as in hardwoods and softwoods, which may influence the degradability of the materials. Under this view, various types of biomass might require a minimal set of enzymes that has to be tailor-made. Partially defined complex mixtures that are currently commercially used are not adapted to efficiently degrade different materials, so novel enzyme mixtures have to be customized. Development of these cocktails requires better knowledge about the specific activities involved, in order to optimize hydrolysis. The role of filamentous fungus Myceliophthora thermophila and its complete enzymatic repertoire for the bioconversion of complex carbohydrates has been widely proven. In this study, four core cellulases (MtCBH7, MtCBH6, MtEG5, and MtEG7), in the presence of other four "accessory" enzymes (mannanase, lytic polyssacharide monooxygenase MtGH61, xylanase, MtFae1a) and β-glucosidase MtBGL3, were tested as a nine-component cocktail against one model substrate (phosphoric acid swollen cellulose) and four hydrothermally pretreated natural substrates (wheat straw as an agricultural waste, birch, and spruce biomass, as forest residues). Synergistic interactions among different enzymes were determined using a suitable design of experiments methodology. The results suggest that for the hydrolysis of the pure substrate (PASC), high proportions of MtEG7 are needed for efficient yields. MtCBH7 and MtEG7 are enzymes of major importance during the hydrolysis of pretreated wheat straw, while MtCBH7 plays a crucial role in case of spruce. Cellobiohydrolases MtCBH6 and MtCBH7 act in combination and are key enzymes for the hydrolysis of the hardwood (birch). Optimum combinations were predicted from suitable statistical models which were able to further increase hydrolysis yields, suggesting that tailor-made enzyme mixtures targeted toward a particular residual biomass can help maximize hydrolysis yields. The present work demonstrates the change from "one cocktail for all" to "tailor-made cocktails" that are needed for the efficient saccharification of targeted feed stocks prior to the production of biobased products through the biorefinery concept.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology Luleå, Sweden
| | - Evangelos Topakas
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of TechnologyLuleå, Sweden; Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of AthensAthens, Greece
| | - Ulrika Rova
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology Luleå, Sweden
| |
Collapse
|
4
|
Alvira P, Negro MJ, Ballesteros I, González A, Ballesteros M. Steam Explosion for Wheat Straw Pretreatment for Sugars Production. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/bioeth-2016-0003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractDevelopment of biofuels such as lignocellulosic ethanol represents a sustainable alternative in the transport sector. Wheat straw is a promising feedstock for bioethanol production in Europe due to its large production and high carbohydrates content. In a process to produce cellulosic ethanol, previous to the enzymatic hydrolysis to obtain fermentable sugars and the subsequent fermentation, a pretreatment step to break down the recalcitrance of lignocellulose fiber is essential. In this work, a range of steam explosion pretreatment conditions were evaluated according to different parameters: sugars recovery, degradation products generation, and enzymatic hydrolysis yields. Moreover, the enzymatic hydrolysis process was also studied at high substrate loadings, since operating at high solids loading is crucial for large scale development of ethanol production. Pretreatment at 200°C - 10 min resulted in higher enzymatic hydrolysis yield (91.7%) and overall glucose yields (35.4 g glucose/100 g wheat straw) but also higher production of toxic compound. In turn, the characteristics of the pretreated wheat straw at lower severity (Log R0=3.65) correspond to 190°C and 10 min, with minimal sugars degradation and toxics formation indicated a great potential for maximizing total sugars production by using optimal enzyme combinations including accessory enzymes in the enzymatic hydrolysis step.
Collapse
|
5
|
Molecular and kinetic characterization of two extracellular Xylanases isolated from Leucoagaricus gongylophorus. Appl Biochem Biotechnol 2014; 173:694-704. [PMID: 24699813 DOI: 10.1007/s12010-014-0872-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/23/2014] [Indexed: 10/25/2022]
Abstract
In this work, the xylanolytic profile of Leucoagaricus gongylophorus was studied, and two extracellular enzymes with xylanolytic activity (XyLg1 and XyLg2) were isolated, purified, and characterized. XyLg1 has a molecular mass of about 38 kDa and pI greater than 4.8. For beechwood xylan substrate, XyLg1 showed an optimum temperature of 40 °C, optimum pH between 8.5 and 10.5, and Km = 14.7 ± 7.6 mg mL(-1). Kinetic studies of the XyLg1 using polygalacturonic acid as substrate were developed, and the enzyme showed optimum pH 5.5, optimum temperature between 50 and 60 °C, and Km = 2.2 ± 0.5 mg mL(-1). XyLg2 has molecular weight of about 24 kDa and pI less than 4.8, and thus is an acid protein. Parameters such as optimum temperature (70 °C) and pH (4.0), as well as the kinetic parameters (Km = 7.4 ± 2.0 mg mL(-1)) using beechwood xylan as substrate, were determined for XyLg2. This enzyme has no activity for polygalacturonic acid as substrate. XyLg1 and XyLg2 are the first native xylanases isolated and characterized from L. gongylophorus fungi and, due to their biochemistry and kinetic features, they have potential to be used in biotechnological processes.
Collapse
|
6
|
Romero A, Mateo J, Maicas S. Characterization of an ethanol-tolerant 1,4-β-xylosidase produced byPichia membranifaciens. Lett Appl Microbiol 2012; 55:354-61. [DOI: 10.1111/j.1472-765x.2012.03297.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Highly thermo–halo–alkali-stable β-1,4-endoxylanase from a novel polyextremophilic strain of Bacillus halodurans. Bioprocess Biosyst Eng 2012; 36:555-65. [DOI: 10.1007/s00449-012-0811-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/10/2012] [Indexed: 11/26/2022]
|
8
|
Dimarogona M, Topakas E, Christakopoulos P, Chrysina ED. The structure of a GH10 xylanase fromFusarium oxysporumreveals the presence of an extended loop on top of the catalytic cleft. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:735-42. [DOI: 10.1107/s0907444912007044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/16/2012] [Indexed: 11/10/2022]
|
9
|
Billard H, Faraj A, Lopes Ferreira N, Menir S, Heiss-Blanquet S. Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:9. [PMID: 22373423 PMCID: PMC3310832 DOI: 10.1186/1754-6834-5-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/28/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND An efficient hydrolysis of lignocellulosic substrates to soluble sugars for biofuel production necessitates the interplay and synergistic interaction of multiple enzymes. An optimized enzyme mixture is crucial for reduced cost of the enzymatic hydrolysis step in a bioethanol production process and its composition will depend on the substrate and type of pretreatment used. In the present study, an experimental design was used to determine the optimal composition of a Trichoderma reesei enzyme mixture, comprising the main cellulase and hemicellulase activities, for the hydrolysis of steam-exploded wheat straw. METHODS Six enzymes, CBH1 (Cel7a), CBH2 (Cel6a), EG1 (Cel7b), EG2 (Cel5a), as well as the xyloglucanase Cel74a and the xylanase XYN1 (Xyl11a) were purified from a T. reesei culture under lactose/xylose-induced conditions. Sugar release was followed in milliliter-scale hydrolysis assays for 48 hours and the influence of the mixture on initial conversion rates and final yields is assessed. RESULTS The developed model could show that both responses were strongly correlated. Model predictions suggest that optimal hydrolysis yields can be obtained over a wide range of CBH1 to CBH2 ratios, but necessitates a high proportion of EG1 (13% to 25%) which cannot be replaced by EG2. Whereas 5% to 10% of the latter enzyme and a xylanase content above 6% are required for highest yields, these enzymes are predicted to be less important in the initial stage of hydrolysis. CONCLUSIONS The developed model could reliably predict hydrolysis yields of enzyme mixtures in the studied domain and highlighted the importance of the respective enzyme components in both the initial and the final hydrolysis phase of steam-exploded wheat straw.
Collapse
Affiliation(s)
- Hélène Billard
- IFP Energies nouvelles, Biotechnology Department, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | - Abdelaziz Faraj
- IFP Energies nouvelles, Applied Mathematics Department, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | - Nicolas Lopes Ferreira
- IFP Energies nouvelles, Biotechnology Department, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | - Sandra Menir
- IFP Energies nouvelles, Biotechnology Department, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | - Senta Heiss-Blanquet
- IFP Energies nouvelles, Biotechnology Department, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| |
Collapse
|