1
|
Tian Y, Xie Y, Bai F, Wang J, Zhang D. Biological Clock Genes are Crucial and Promising Biomarkers for the Therapeutic Targets and Prognostic Assessment in Gastric Cancer. J Gastrointest Cancer 2024; 55:900-912. [PMID: 38427147 DOI: 10.1007/s12029-024-01028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Gastric cancer is one of the major public health problems worldwide. Circadian rhythm disturbances driven by circadian clock genes play a role in the development of cancer. However, whether circadian clock genes can serve as potential therapeutic targets and prognostic biomarkers for gastric cancer remains elusive. METHODS In this study, we comprehensively analyzed the potential relationship between circadian clock genes and gastric cancer using online bioinformatics databases such as GEPIA, cBioPortal, STRING, GeneMANIA, Metascape, TIMER, TRRUST, and GEDS. RESULTS Biological clock genes are expressed differently in human tumors. Compared with normal tissues, only PER1, CLOCK, and TIMELESS expression differences were statistically significant in gastric cancer (p < 0.05). PER1 (p = 0.0169) and CLOCK (p = 0.0414) were associated with gastric cancer pathological stage (p < 0.05). Gastric cancer patients with high expression of PER1 (p = 0.0028) and NR1D1 (p = 0.016) had longer overall survival, while those with high expression of PER1 (p = 0.042) and NR1D1 (p = 0.016) had longer disease-free survival. The main function of the biological clock gene is related to the circadian rhythms and melatonin metabolism and effects. CLOCK, NPAS2, and KAT2B were key transcription factors for circadian clock genes. In addition, we also found important correlations between circadian clock genes and various immune cells in the gastric cancer microenvironment. CONCLUSIONS This study may establish a new gastric cancer prognostic indicator based on the biological clock gene and develop new drugs for the treatment of gastric cancer using biological clock gene targets.
Collapse
Affiliation(s)
- Yonggang Tian
- Department of Gastroenterology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou, 730030, Gansu Province, China
| | - Yunqian Xie
- The Gastroenterology Clinical Medical Center of Hainan Province, Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Hainan Province, Haikou City, China
| | - Feihu Bai
- The Gastroenterology Clinical Medical Center of Hainan Province, Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Hainan Province, Haikou City, China.
| | - Jun Wang
- Department of Gastroenterology, 986 Hospital, Xijing Hospital, Air Force Military Medical University, No. 269, Youyi East Road, Xi'an, Shaanxi Province, 710089, China.
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou, 730030, Gansu Province, China.
| |
Collapse
|
2
|
Jiang Z, Sang X, Lu J, Gao L. Circadian rhythm of cutaneous pruritus. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:190-196. [PMID: 38755715 PMCID: PMC11103053 DOI: 10.11817/j.issn.1672-7347.2024.230397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Indexed: 05/18/2024]
Abstract
One of the most common and significant symptoms for skin disorders is pruritus. Additionally, it serves as a significant catalyst for the exacerbation or reoccurrence of skin diseases. Pruritus seriously affects patients' physical and mental health, and even the quality of life. It brings a heavy burden to the patients, the families, even the whole society. The pathogenesis and regulation mechanisms for pruritus are complicated and have not yet been elucidated. Previous clinical studies have shown that itch worsens at night in scabies, chronic pruritus, atopic dermatitis, and psoriasis, suggesting that skin pruritus may change with circadian rhythm. Cortisol, melatonin, core temperature, cytokines, and prostaglandins are the main regulatory factors of the circadian rhythm of pruritus. Recent studies have shown that some CLOCK genes, such as BMAL1, CLOCK, PER, and CRY, play an important role in the regulation of the circadian rhythm of pruritus by regulating the Janus tyrosine kinase (JAK)-signal transducer and activator of transcription (STAT) and nuclear factor kappa-B (NF-κB) signaling pathways. However, the mechanisms for circadian clock genes in regulation of circadian rhythm of pruritus have not been fully elucidated. Further studies on the mechanism of circadian clock genes in the regulation of circadian rhythm of pruritus will lay a foundation for elucidating the regulatory mechanisms for pruritus, and also provide new ideas for the control of pruritus and the alleviation of skin diseases.
Collapse
Affiliation(s)
- Zichao Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013.
- Xiangya School of Medicine, Central South University, Changsha 410013.
| | - Xiaoxue Sang
- Xiangya Nursing School, Central South University, Changsha 410013, China
| | - Jianyun Lu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Lihua Gao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013.
| |
Collapse
|
3
|
Gršković P, Korać P. Circadian Gene Variants in Diseases. Genes (Basel) 2023; 14:1703. [PMID: 37761843 PMCID: PMC10531145 DOI: 10.3390/genes14091703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm is a self-sustaining 24 h cycle that regulates physiological processes within the body, including cycles of alertness and sleepiness. Cells have their own intrinsic clock, which consists of several proteins that regulate the circadian rhythm of each individual cell. The core of the molecular clock in human cells consists of four main circadian proteins that work in pairs. The CLOCK-BMAL1 heterodimer and the PER-CRY heterodimer each regulate the other pair's expression, forming a negative feedback loop. Several other proteins are involved in regulating the expression of the main circadian genes, and can therefore also influence the circadian rhythm of cells. This review focuses on the existing knowledge regarding circadian gene variants in both the main and secondary circadian genes, and their association with various diseases, such as tumors, metabolic diseases, cardiovascular diseases, and sleep disorders.
Collapse
Affiliation(s)
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia;
| |
Collapse
|
4
|
Qian L, Ding X, Fan X, Li S, Qiao Y, Zhang X, Li J. Identification and validation of a novel prognostic circadian rhythm-related gene signature for stomach adenocarcinoma. Chronobiol Int 2023; 40:744-758. [PMID: 37122167 DOI: 10.1080/07420528.2023.2205936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/23/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Circadian rhythm genes were reported to be strongly associated with the development and prognosis of circadian rhythm disorders related to stomach adenocarcinoma (STAD), which is one of the most prevalent cancers. This study aimed to identify a circadian rhythm-related gene signature that could help predict STAD outcome. Using bioinformatics analysis approaches, 105 genes were examined in 350 patients with STAD. Overall, six hub-type circadian rhythm-associated genes (GNA11, PER1, SOX14, EZH2, MAGED1, and NR1D1) were identified using univariate and multivariate Cox regression analyses. These genes were then used to build a genetic predictive model, which was further validated using a publicly available dataset (GSE26899). Overall, genes associated with the circadian rhythm were found to be substantially correlated with the characteristics of the STAD patients (grade, sex, and M stage). In addition, the circadian rhythm-related gene signature was significantly associated with the MAPK and Notch signaling pathways, which are known risk factors for poorer STAD outcome. Taken together, these findings suggest that the herein proposed prognostic model based on six circadian rhythm-associated genes may have predictive value and potential application for clinical decision-making and for personalized treatment of STAD.
Collapse
Affiliation(s)
- Lei Qian
- Department of Experiment Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaochen Ding
- Department of Experiment Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoyan Fan
- Department of Experiment Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Yihuan Qiao
- School of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Xiaoqun Zhang
- Department of Pharmacy, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| | - Jipeng Li
- Department of Experiment Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Hosseini K, Beirami SM, Forouhandeh H, Vahed SZ, Eyvazi S, Ramazani F, Tarhriz V, Ardalan M. The role of circadian gene timeless in gastrointestinal cancers. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Malik S, Stokes Iii J, Manne U, Singh R, Mishra MK. Understanding the significance of biological clock and its impact on cancer incidence. Cancer Lett 2022; 527:80-94. [PMID: 34906624 PMCID: PMC8816870 DOI: 10.1016/j.canlet.2021.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock is an essential timekeeper that controls, for humans, the daily rhythm of biochemical, physiological, and behavioral functions. Irregular performance or disruption in circadian rhythms results in various diseases, including cancer. As a factor in cancer development, perturbations in circadian rhythms can affect circadian homeostasis in energy balance, lead to alterations in the cell cycle, and cause dysregulation of chromatin remodeling. However, knowledge gaps remain in our understanding of the relationship between the circadian clock and cancer. Therefore, a mechanistic understanding by which circadian disruption enhances cancer risk is needed. This review article outlines the importance of the circadian clock in tumorigenesis and summarizes underlying mechanisms in the clock and its carcinogenic mechanisms, highlighting advances in chronotherapy for cancer treatment.
Collapse
Affiliation(s)
- Shalie Malik
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA; Department of Zoology and Dr. Giri Lal Gupta Institute of Public Health and Public Affairs, University of Lucknow, Lucknow, UP, India
| | - James Stokes Iii
- Department of Biological and Environmental Sciences, Auburn University, Montgomery, AL, USA
| | - Upender Manne
- Departments of Pathology, Surgery and Epidemiology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA.
| |
Collapse
|
7
|
Xiong Y, Zhuang Y, Zhong M, Qin W, Huang B, Zhao J, Gao Z, Ma J, Wu Z, Hong X, Yue Z, Lu H. Period 2 Suppresses the Malignant Cellular Behaviors of Colorectal Cancer Through the Epithelial-Mesenchymal Transformation Process. Cancer Control 2022; 29:10732748221081369. [PMID: 35220799 PMCID: PMC8891940 DOI: 10.1177/10732748221081369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Introduction The PER2 (Period circadian regulator 2) gene is related to the circadian clock, and it has been deemed as a suppressor gene in osteosarcoma and lung carcinoma. However, the part of PER2 in CRC (colorectal cancer) needs to be further determined. Methods First, we collected clinical samples to detect PER2 expression in CRC. Then, we used cell transfection to knock down PER2 expression in CRC cell lines and performed a series of functional experiments to elucidate the effects of PER2 on CRC cells. We next verified whether PER2 affects the epithelial-mesenchymal transformation (EMT) process in CRC by conducting quantitative real-time PCR and western blotting. Results In the research, we revealed that the expression of PER2 decreased in CRC clinical samples. In addition, knocking down PER2 expression caused CRC cells to acquire malignant biological features. Finally, we found that PER2 knockdown may activate the Snail/Slug axis through inhibiting p53, therefore promote the activation of the EMT pathway. Conclusion In conclusion, low PER2 expression reinforces migration and activates EMT in CRC, suggesting that PER2 is closely related to CRC development and could be used as a potential treatment site in the clinic.
Collapse
Affiliation(s)
- Yubo Xiong
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Xiamen UniversityUniversity, Xiamen, China
- School of Medicine, Xiamen UniversityUniversity, Xiamen, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityUniversity, Xiamen, China
| | - Yifan Zhuang
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Xiamen UniversityUniversity, Xiamen, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityUniversity, Xiamen, China
| | - Mengya Zhong
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Xiamen UniversityUniversity, Xiamen, China
- School of Medicine, Xiamen UniversityUniversity, Xiamen, China
| | - Wenjuan Qin
- Department of Radiation Oncology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Boyi Huang
- Imaging Department, Affiliated Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Jiabao Zhao
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Xiamen UniversityUniversity, Xiamen, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityUniversity, Xiamen, China
| | - Zhi Gao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning, China
| | - Jingsong Ma
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Xiamen UniversityUniversity, Xiamen, China
- School of Medicine, Xiamen UniversityUniversity, Xiamen, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityUniversity, Xiamen, China
| | - Zhengxin Wu
- School of Medicine, Guangxi University, Nanning, China
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Xiamen UniversityUniversity, Xiamen, China
- School of Medicine, Xiamen UniversityUniversity, Xiamen, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen UniversityUniversity, Xiamen, China
| | - Zhicao Yue
- Shenzhen University Carson Cancer, Shenzhen University Health Science Center, Shenzhen, China
| | - Haijie Lu
- Department of Radiation Oncology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Cui S, Chen Y, Guo Y, Chen D. Clock genes and gastric cancer. BIOL RHYTHM RES 2022. [DOI: 10.1080/09291016.2021.2020993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Shuaishuai Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yuanyuan Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yunfei Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dahu Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
9
|
Bacalini MG, Palombo F, Garagnani P, Giuliani C, Fiorini C, Caporali L, Stanzani Maserati M, Capellari S, Romagnoli M, De Fanti S, Benussi L, Binetti G, Ghidoni R, Galimberti D, Scarpini E, Arcaro M, Bonanni E, Siciliano G, Maestri M, Guarnieri B, Martucci M, Monti D, Carelli V, Franceschi C, La Morgia C, Santoro A. Association of rs3027178 polymorphism in the circadian clock gene PER1 with susceptibility to Alzheimer's disease and longevity in an Italian population. GeroScience 2021; 44:881-896. [PMID: 34921659 PMCID: PMC9135916 DOI: 10.1007/s11357-021-00477-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022] Open
Abstract
Many physiological processes in the human body follow a 24-h circadian rhythm controlled by the circadian clock system. Light, sensed by retina, is the predominant “zeitgeber” able to synchronize the circadian rhythms to the light-dark cycles. Circadian rhythm dysfunction and sleep disorders have been associated with aging and neurodegenerative diseases including mild cognitive impairment (MCI) and Alzheimer’s disease (AD). In the present study, we aimed at investigating the genetic variability of clock genes in AD patients compared to healthy controls from Italy. We also included a group of Italian centenarians, considered as super-controls in association studies given their extreme phenotype of successful aging. We analyzed the exon sequences of eighty-four genes related to circadian rhythms, and the most significant variants identified in this first discovery phase were further assessed in a larger independent cohort of AD patients by matrix assisted laser desorption/ionization-time of flight mass spectrometry. The results identified a significant association between the rs3027178 polymorphism in the PER1 circadian gene with AD, the G allele being protective for AD. Interestingly, rs3027178 showed similar genotypic frequencies among AD patients and centenarians. These results collectively underline the relevance of circadian dysfunction in the predisposition to AD and contribute to the discussion on the role of the relationship between the genetics of age-related diseases and of longevity.
Collapse
Affiliation(s)
- Maria Giulia Bacalini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Laboratorio Brain Aging, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy.,CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy.,Department of Laboratory Medicine, Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Cristina Giuliani
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.,Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | | | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Sara De Fanti
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.,Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Luisa Benussi
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - Elio Scarpini
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - Marina Arcaro
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
| | - Enrica Bonanni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michelangelo Maestri
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Biancamaria Guarnieri
- Center of Sleep Medicine, Villa Serena Hospital and Villaserena Foundation for the Research, Città S. Angelo, Pescara, Italy
| | | | - Morena Martucci
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Department of Applied Mathematics, Institute of Information Technology, Mathematics and Mechanics (ITMM), Lobachevsky State University of Nizhny Novgorod-National Research University (UNN), Nizhny Novgorod, Russia
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy. .,Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.
| |
Collapse
|
10
|
Bermúdez-Guzmán L, Blanco-Saborío A, Ramírez-Zamora J, Lovo E. The Time for Chronotherapy in Radiation Oncology. Front Oncol 2021; 11:687672. [PMID: 34046365 PMCID: PMC8144648 DOI: 10.3389/fonc.2021.687672] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022] Open
Abstract
Five decades ago, Franz Halberg conceived the idea of a circadian-based therapy for cancer, given the differential tolerance to treatment derived from the intrinsic host rhythms. Nowadays, different experimental models have demonstrated that both the toxicity and efficacy of several anticancer drugs vary by more than 50% as a function of dosing time. Accordingly, it has been shown that chemotherapeutic regimens optimally timed with the circadian cycle have jointly improved patient outcomes both at the preclinical and clinical levels. Along with chemotherapy, radiation therapy is widely used for cancer treatment, but its effectiveness relies mainly on its ability to damage DNA. Notably, the DNA damage response including DNA repair, DNA damage checkpoints, and apoptosis is gated by the circadian clock. Thus, the therapeutic potential of circadian-based radiotherapy against cancer is mainly dependent upon the control that the molecular clock exerts on DNA repair enzymes across the cell cycle. Unfortunately, the time of treatment administration is not usually considered in clinical practice as it varies along the daytime working hours. Currently, only a few studies have evaluated whether the timing of radiotherapy affects the treatment outcome. Several of these studies show that it is possible to reduce the toxicity of the treatment if it is applied at a specific time range, although with some inconsistencies. In this Perspective, we review the main advances in the field of chronoradiotherapy, the possible causes of the inconsistencies observed in the studies so far and provide some recommendations for future trials.
Collapse
Affiliation(s)
| | | | | | - Eduardo Lovo
- International Cancer Center, Diagnostic Hospital, San Salvador, El Salvador
| |
Collapse
|
11
|
Benna C, Rajendran S, Spiro G, Menin C, Dall'Olmo L, Rossi CR, Mocellin S. Gender-specific associations between polymorphisms of the circadian gene RORA and cutaneous melanoma susceptibility. J Transl Med 2021; 19:57. [PMID: 33549124 PMCID: PMC7866430 DOI: 10.1186/s12967-021-02725-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/28/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Melanoma is the deadliest of skin cancers and has an increasing annual incidence worldwide. It is a multi-factorial disease most likely arising from both genetic predisposition and environmental exposure to ultraviolet light. Genetic variability of the components of the biological circadian clock is recognized to be a risk factor for different type of cancers. Moreover, two variants of a clock gene, RORA, have been associated with melanoma patient's prognosis. Our aim is to test the hypothesis that specific single nucleotide polymorphisms (SNPs) of the circadian clock genes may significantly influence the predisposition to develop cutaneous melanoma or the outcome of melanoma patients. METHODS We genotyped 1239 subjects, 629 cases of melanoma and 610 healthy controls in 14 known SNPs of seven selected clock genes: AANAT, CLOCK, NPAS2, PER1, PER2, RORA, and TIMELESS. Genotyping was conducted by q-PCR. Multivariate logistic regression was employed for susceptibility of melanoma assessment, modeled additively. Subgroup analysis was performed by gender. For the female subgroup, a further discrimination was performed by age. For prognosis of melanoma assessment, multivariate Cox proportional hazard regression was employed. The Benjamini-Hochberg method was utilized as adjustment for multiple comparisons. RESULTS We identified two RORA SNPs statistically significant with respect to the association with melanoma susceptibility. Considering the putative role of RORA as a nuclear steroid hormone receptor, we conducted a subgroup analysis by gender. Interestingly, the RORA rs339972 C allele was associated with a decreased predisposition to develop melanoma only in the female subgroup (OR 0.67; 95% CI 0.51-0.88; P = 0.003) while RORA rs10519097 T allele was associated with a decreased predisposition to develop melanoma only in the male subgroup (OR 0.62; 95% CI 0.44-0.87; P = 0.005). Moreover, the RORA rs339972 C allele had a decreased susceptibility to develop melanoma only in females aged over 50 years old (OR 0.67; 95% CI 0.54-0.83; P = 0.0002). None of the studied SNPs were significantly associated with the prognosis. CONCLUSIONS Overall, we cannot ascertain that circadian pathway genetic variation is involved in melanoma susceptibility or prognosis. Nevertheless, we identified an interesting relationship between melanoma susceptibility and RORA polymorphisms acting in sex-specific manner and which is worth further future investigation.
Collapse
Affiliation(s)
- Clara Benna
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy. .,First Surgical Clinic, Azienda Ospedaliera Padova, Padova, Italy.
| | - Senthilkumar Rajendran
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Giovanna Spiro
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Chiara Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology (IOV - IRCCS), Padova, Italy
| | - Luigi Dall'Olmo
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova, Italy
| | - Carlo Riccardo Rossi
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova, Italy
| | - Simone Mocellin
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova, Italy
| |
Collapse
|