1
|
Ruan X, Wang N, Xie Q, Du Y. RNF144A as a potential risk gene for endometrial carcinoma: Insights from Mendelian randomization, bulk RNA sequencing, single-cell RNA, and experimental analysis. Medicine (Baltimore) 2024; 103:e39886. [PMID: 39465767 PMCID: PMC11460862 DOI: 10.1097/md.0000000000039886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 10/29/2024] Open
Abstract
Endometrial carcinoma (EC) is a prevalent gynecological malignancy that poses a significant threat to women's health worldwide. However, its pathogenesis and underlying mechanisms remains unclear. In this study, expression quantitative trait loci data, Mendelian randomization analysis, and differential expression analysis were performed to identify potential targets. A prognostic risk signature was subsequently constructed for EC patients based on the expression of these genes. Four bioinformatics algorithms, including generalized linear model, extreme gradient boosting, support vector machine, and random forest, were used to identify hub genes in EC. The expression of ring finger protein 144A (RNF144A) was validated using quantitative real-time polymerase chain reaction. Cellular proliferation and migration ability were evaluated using CCK-8 and Transwell assays, respectively. The genes RNF144A, ketohexokinase, and Rab interacting lysosomal protein like 2 were identified as potential targets for EC. Their differential expression was observed in EC patients, and Mendelian randomization analysis revealed a negative correlation between these genes and the development of EC. Mechanistic analyses suggested a strong association between these genes and the tumor immune microenvironment. The constructed risk signature was significantly associated with the prognosis, age, cancer stage, and grade of EC patients. Furthermore, based on interacted model algorithms, RNF144A was identified as a hub gene in EC. It was found to be significantly downregulated in EC samples, and its expression was positively correlated with the stage and grade of EC patients. In vitro experiments showed that overexpression of RNF144A significantly promoted cell growth and migration in EC cells. In conclusion, this study provides insights into the molecular mechanisms underlying EC progression and identifies preliminary candidate biomarkers for the development of EC treatment strategies.
Collapse
Affiliation(s)
- Xiqin Ruan
- Department of Obstetrics, The First People’s Hospital of Linping District, Hangzhou, China
| | - Ni Wang
- Department of Obstetrics, The First People’s Hospital of Linping District, Hangzhou, China
| | - Qingwen Xie
- Department of Obstetrics, The First People’s Hospital of Linping District, Hangzhou, China
| | - Yi Du
- Department of Obstetrics, The First People’s Hospital of Linping District, Hangzhou, China
| |
Collapse
|
2
|
Wang M, Zhang Z, Li Z, Zhu Y, Xu C. E3 ubiquitin ligases and deubiquitinases in bladder cancer tumorigenesis and implications for immunotherapies. Front Immunol 2023; 14:1226057. [PMID: 37497216 PMCID: PMC10366618 DOI: 10.3389/fimmu.2023.1226057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
With the rapidly increasing incidence of bladder cancer in China and worldwide, great efforts have been made to understand the detailed mechanism of bladder cancer tumorigenesis. Recently, the introduction of immune checkpoint inhibitor-based immunotherapy has changed the treatment strategy for bladder cancer, especially for advanced bladder cancer, and has improved the survival of patients. The ubiquitin-proteasome system, which affects many biological processes, plays an important role in bladder cancer. Several E3 ubiquitin ligases and deubiquitinases target immune checkpoints, either directly or indirectly. In this review, we summarize the recent progress in E3 ubiquitin ligases and deubiquitinases in bladder cancer tumorigenesis and further highlight the implications for bladder cancer immunotherapies.
Collapse
Affiliation(s)
- Maoyu Wang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhensheng Zhang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhizhou Li
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yasheng Zhu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Wang X, Zhang Y, Wu Y, Cheng H, Wang X. The role of E3 ubiquitin ligases and deubiquitinases in bladder cancer development and immunotherapy. Front Immunol 2023; 14:1202633. [PMID: 37215134 PMCID: PMC10196180 DOI: 10.3389/fimmu.2023.1202633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Bladder cancer is one of the common malignant urothelial tumors. Post-translational modification (PTMs), including ubiquitination, acetylation, methylation, and phosphorylation, have been revealed to participate in bladder cancer initiation and progression. Ubiquitination is the common PTM, which is conducted by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin-protein ligase. E3 ubiquitin ligases play a key role in bladder oncogenesis and progression and drug resistance in bladder cancer. Therefore, in this review, we summarize current knowledge regarding the functions of E3 ubiquitin ligases in bladder cancer development. Moreover, we provide the evidence of E3 ubiquitin ligases in regulation of immunotherapy in bladder cancer. Furthermore, we mention the multiple compounds that target E3 ubiquitin ligases to improve the therapy efficacy of bladder cancer. We hope our review can stimulate researchers and clinicians to investigate whether and how targeting E3 ubiquitin ligases acts a novel strategy for bladder cancer therapy.
Collapse
|
4
|
Liu J, Wang Q, Kang Y, Xu S, Pang D. Unconventional protein post-translational modifications: the helmsmen in breast cancer. Cell Biosci 2022; 12:22. [PMID: 35216622 PMCID: PMC8881842 DOI: 10.1186/s13578-022-00756-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/07/2022] [Indexed: 01/10/2023] Open
Abstract
AbstractBreast cancer is the most prevalent malignant tumor and a leading cause of mortality among females worldwide. The tumorigenesis and progression of breast cancer involve complex pathophysiological processes, which may be mediated by post-translational modifications (PTMs) of proteins, stimulated by various genes and signaling pathways. Studies into PTMs have long been dominated by the investigation of protein phosphorylation and histone epigenetic modifications. However, with great advances in proteomic techniques, several other PTMs, such as acetylation, glycosylation, sumoylation, methylation, ubiquitination, citrullination, and palmitoylation have been confirmed in breast cancer. Nevertheless, the mechanisms, effects, and inhibitors of these unconventional PTMs (particularly, the non-histone modifications other than phosphorylation) received comparatively little attention. Therefore, in this review, we illustrate the functions of these PTMs and highlight their impact on the oncogenesis and progression of breast cancer. Identification of novel potential therapeutic drugs targeting PTMs and development of biological markers for the detection of breast cancer would be significantly valuable for the efficient selection of therapeutic regimens and prediction of disease prognosis in patients with breast cancer.
Collapse
|
5
|
Characterizing kinase intergenic-breakpoint rearrangements in a large-scale lung cancer population and real-world clinical outcomes. ESMO Open 2022; 7:100405. [PMID: 35305401 PMCID: PMC9058911 DOI: 10.1016/j.esmoop.2022.100405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Kinase gene fusions are strong driver mutations in neoplasia; however, kinase intergenic-breakpoint rearrangements (IGRs) confound the detection of such fusions and of targeted treatments. We aim to provide an overview of kinase IGRs in a large lung cancer cohort and examine real-world survival outcomes of patients with such fusions. METHODS Mutational profiles analyzed using targeted next-generation sequencing of 425 cancer-related genes between June 2016 and July 2019 were retrospectively reviewed. Patients' demographic data, clinical characteristics, and survivals were analyzed. RNA sequencing or immunohistochemical assays were carried out to verify chimeric fusion products. RESULTS We identified 3411 patients with kinase fusions from a cohort of 30 450 patients with lung cancer, and 624 kinase IGR events were identified in 538 of the 3411 patients. The most frequently identified kinase genes included anaplastic lymphoma kinase (ALK), RET proto-oncogene (RET), ROS proto-oncogene 1 (ROS1), Erb-B2 receptor tyrosine kinase 2/3 (ERBB2/3), and epidermal growth factor receptor (EGFR). Our data showed that most (67%) kinase IGRs occurred on the same chromosome and kinase domains remained intact at the 3'-end. Approximately 3% (19/624) of the kinase IGRs had one genomic breakpoint located in gene promoter regions, including nine fusion events involving ALK, RET, ROS1, EGFR, ERBB2, or fibroblast growth factor receptor 3 (FGFR3). Among the 538 patients with kinase IGRs, 167 (31%) lacked oncogenic driver mutations, among which 28 received targeted therapies in real-world practice. Notably, three ALK IGR patients who harbored no canonical oncogenic aberrations were confirmed with an EML4-ALK chimeric fusion product by RNA sequencing and/or ALK immunohistochemical assays. One patient demonstrated a favorable clinical outcome after 14 months on crizotinib. An additional two patients who had ROS1 IGRs demonstrated a clinical benefit after 13 and 19 months on crizotinib, respectively. CONCLUSION A large real-world lung cancer cohort with kinase IGRs was comprehensively analyzed for their molecular characteristics. The data indicated the potential oncogenic function of kinase IGRs and their outcomes following the administration of targeted therapies.
Collapse
|
6
|
Zhang YL, Cao JL, Zhang Y, Liao L, Deng L, Yang SY, Hu SY, Ning Y, Zhang FL, Li DQ. RNF144A exerts tumor suppressor function in breast cancer through targeting YY1 for proteasomal degradation to downregulate GMFG expression. Med Oncol 2022; 39:48. [PMID: 35103856 PMCID: PMC8807444 DOI: 10.1007/s12032-021-01631-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022]
Abstract
Ring finger protein 144A (RNF144A), a poorly characterized member of the RING-in-between-RING family of E3 ubiquitin ligases, is an emerging tumor suppressor, but its underlying mechanism remains largely elusive. To address this issue, we used Affymetrix GeneChip Human Transcriptome Array 2.0 to profile gene expression in MDA-MB-231 cells stably expressing empty vector pCDH and Flag-RNF144A, and found that 128 genes were differentially expressed between pCDH- and RNF144A-expressing cells with fold change over 1.5. We further demonstrated that RNF144A negatively regulated the protein and mRNA levels of glial maturation factor γ (GMFG). Mechanistical investigations revealed that transcription factor YY1 transcriptionally activated GMFG expression, and RNF144A interacted with YY1 and promoted its ubiquitination-dependent degradation, thus blocking YY1-induced GMFG expression. Functional rescue assays showed that ectopic expression of RNF144A suppressed the proliferative, migratory, and invasive potential of breast cancer cells, and the noted effects were partially restored by re-expression of GMFG in RNF144A-overexpressing breast cancer cells. Collectively, these findings reveal that RNF144A negatively regulates GMFG expression by targeting YY1 for proteasomal degradation, thus inhibiting the proliferation, migration, and invasion of breast cancer cells.
Collapse
Affiliation(s)
- Yin-Ling Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jin-Ling Cao
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ye Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Liao
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Deng
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shao-Ying Yang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Ning
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Hindi NN, Elsakrmy N, Ramotar D. The base excision repair process: comparison between higher and lower eukaryotes. Cell Mol Life Sci 2021; 78:7943-7965. [PMID: 34734296 PMCID: PMC11071731 DOI: 10.1007/s00018-021-03990-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 01/01/2023]
Abstract
The base excision repair (BER) pathway is essential for maintaining the stability of DNA in all organisms and defects in this process are associated with life-threatening diseases. It is involved in removing specific types of DNA lesions that are induced by both exogenous and endogenous genotoxic substances. BER is a multi-step mechanism that is often initiated by the removal of a damaged base leading to a genotoxic intermediate that is further processed before the reinsertion of the correct nucleotide and the restoration of the genome to a stable structure. Studies in human and yeast cells, as well as fruit fly and nematode worms, have played important roles in identifying the components of this conserved DNA repair pathway that maintains the integrity of the eukaryotic genome. This review will focus on the components of base excision repair, namely, the DNA glycosylases, the apurinic/apyrimidinic endonucleases, the DNA polymerase, and the ligases, as well as other protein cofactors. Functional insights into these conserved proteins will be provided from humans, Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans, and the implications of genetic polymorphisms and knockouts of the corresponding genes.
Collapse
Affiliation(s)
- Nagham Nafiz Hindi
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Noha Elsakrmy
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar.
| |
Collapse
|
8
|
Ho SR, Lee YC, Ittmann MM, Lin FT, Chan KS, Lin WC. RNF144A deficiency promotes PD-L1 protein stabilization and carcinogen-induced bladder tumorigenesis. Cancer Lett 2021; 520:344-360. [PMID: 34400221 PMCID: PMC9420248 DOI: 10.1016/j.canlet.2021.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/21/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
RNF144A is a DNA damage-induced E3 ubiquitin ligase that targets proteins involved in genome instability for degradation, e.g., DNA-PKcs and BMI1. RNF144A is frequently mutated or epigenetically silenced in cancer, providing the rationale to evaluate RNF144A loss of function in tumorigenesis. Here we report that RNF144A-deficient mice are more prone to the development of bladder tumors upon carcinogen exposure. In addition to DNA-PKcs and BMI1, we identify the immune checkpoint protein PD-L1 as a novel degradation target of RNF144A, since these proteins are expressed at higher levels in Rnf144a KO tumors. RNF144A interacts with PD-L1 in the plasma membrane and intracellular vesicles and promotes poly-ubiquitination and degradation of PD-L1. Therefore, Rnf144a KO stabilizes PD-L1 and leads to a reduction of tumor-infiltrating CD8+ T cell populations in the BBN-induced bladder tumors. The bladder tumors developed in WT and Rnf144a KO mice primarily express CK5 and CK14, markers of basal cancer subtype, as expected in BBN-induced bladder tumors. Intriguingly, the Rnf144a KO tumors also express GATA3, a marker for the luminal subtype, suggesting that RNF144A loss of function promotes features of cellular differentiation. Such differentiation features in Rnf144a KO tumors likely result from a decrease of EGFR expression, consistent with the reported role of RNF144A in maintaining EGFR expression. In summary, for the first time our study demonstrates the in vivo tumor suppressor activity of RNF144A upon carcinogenic insult. Loss of RNF144A promotes the expression of DNA-PKcs, BMI1 and PD-L1, likely contributing to the carcinogen-induced bladder tumorigenesis.
Collapse
Affiliation(s)
- Shiuh-Rong Ho
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fang-Tsyr Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Keith Syson Chan
- Department of Pathology and Laboratory Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Weei-Chin Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Cheng Y, Hu Y, Wang H, Zhao Z, Jiang X, Zhang Y, Zhang J, Tong Y, Qiu X. Ring finger protein 19A is overexpressed in non-small cell lung cancer and mediates p53 ubiquitin-degradation to promote cancer growth. J Cell Mol Med 2021; 25:7796-7808. [PMID: 34184814 PMCID: PMC8358885 DOI: 10.1111/jcmm.16674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
The expression pattern, biological functions and the related mechanisms of the ring finger protein 19A (RNF19A) in non-small cell lung cancer (NSCLC) remain poorly understood. This study aimed to explore the role of RNF19A, as well as the underlying potential mechanism, in the development of NSCLC. Here, we found that RNF19A was overexpressed in NSCLC tissues, and RNF19A expression in NSCLC tissue samples was associated with NSCLC carcinogenesis and poor outcome. RNF19A promoted the proliferation of NSCLC cells and inhibited apoptosis. RNF19A reduced p53, p21 and BAX expression and induced Cyclin D1, CDK4, CDK6 and BCL2 expression. The inhibitory effect of RNF19A knockdown on proliferation was partially rescued by p53 silencing. RNF19A interacted with p53, shortened p53 half-life and mediated p53 ubiquitin-degradation. Collectively, we suggest that RNF19A plays a critical oncogenic role in lung carcinogenesis by disrupting the function of p53. RNF19A may serve as a new biomarker and/or target for NSCLC management.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Pathology, Cancer Research Laboratory, Chengde Medical College, Chengde, China
| | - Yujiao Hu
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Huanxi Wang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Zhi Zhao
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Pathology, Zhengzhou Yihe Hospital Affiliated to Henan University, Zhengzhou, China
| | - Xizi Jiang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yao Zhang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jiameng Zhang
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yue Tong
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Li Y, Wang J, Wang F, Chen W, Gao C, Wang J. RNF144A suppresses ovarian cancer stem cell properties and tumor progression through regulation of LIN28B degradation via the ubiquitin-proteasome pathway. Cell Biol Toxicol 2021; 38:809-824. [PMID: 33978933 DOI: 10.1007/s10565-021-09609-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/27/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Cancer stem cells (CSCs) are the main driving force of tumorigenesis, metastasis, recurrence, and drug resistance in epithelial ovarian cancer (EOC). The current study aimed to explore the regulatory effects of ring finger protein 144A (RNF144A), an E3 ubiquitin ligase, in the maintenance of CSC properties and tumor development in EOC. METHODS The expressions of RNF144A in EOC tissue samples and cells were examined. The knockdown or overexpression of a target gene was achieved by transfecting EOC cells with short hairpin RNA or adenoviral vectors. A mouse xenograft model was constructed by inoculating nude mice with EOC cells. Co-immunoprecipitation was used to determine the interaction between RNF144A and LIN28B. RESULTS Downregulated RNF144A expression was observed in ovarian tumor tissues and EOC cells. Low RNF144A expression was positively associated with poor survival of EOC patients. RNF144A knockdown significantly enhanced sphere formation and upregulated stem cell markers in EOC cells, while RNF144A overexpression prevented EOC cells from acquiring stem cell properties. Also, the upregulation of RNF144A inhibited ovarian tumor growth and aggressiveness in cell culture and mouse xenografts. Further analysis revealed that RNF144A induced LIN28B degradation through ubiquitination in EOC cells. LIN28B upregulation restored the expressions of stem cell pluripotency-associated transcription factors in EOC cells overexpressing RNF144A. CONCLUSION Taken together, our findings highlight the therapeutic potential of restoring RNF144A expression and thereby suppressing LIN28B-associated oncogenic signaling for EOC treatment. • Ring finger protein 144A (RNF144A) is downregulated in epithelial ovarian cancer (EOC) tissues and cell lines. • The overexpression of RNF144A prevents EOC cells from acquiring stem cell properties and inhibits ovarian tumor growth. • RNF144A induces LIN28B degradation through ubiquitination in EOC cells. • LIN28B upregulation restores the expressions of stem cell pluripotency-associated transcription factors in EOC cells overexpressing RNF144A.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Fang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Wenyu Chen
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Chengzhen Gao
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Jianhua Wang
- Department of Gastroenterology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, No. 66, Renmin South Road, Yancheng, 224001, Jiangsu, China.
| |
Collapse
|
11
|
Wang P, Dai X, Jiang W, Li Y, Wei W. RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol 2020; 67:131-144. [PMID: 32442483 DOI: 10.1016/j.semcancer.2020.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
RING-in-between-RING (RBR) E3 ligases are one class of E3 ligases that is characterized by the unique RING-HECT hybrid mechanism to function with E2s to transfer ubiquitin to target proteins for degradation. Emerging evidence has demonstrated that RBR E3 ligases play essential roles in neurodegenerative diseases, infection, inflammation and cancer. Accumulated evidence has revealed that RBR E3 ligases exert their biological functions in various types of cancers by modulating the degradation of tumor promoters or suppressors. Hence, we summarize the differential functions of RBR E3 ligases in a variety of human cancers. In general, ARIH1, RNF14, RNF31, RNF144B, RNF216, and RBCK1 exhibit primarily oncogenic roles, whereas ARIH2, PARC and PARK2 mainly have tumor suppressive functions. Moreover, the underlying mechanisms by which different RBR E3 ligases are involved in tumorigenesis and progression are also described. We discuss the further investigation is required to comprehensively understand the critical role of RBR E3 ligases in carcinogenesis. We hope our review can stimulate the researchers to deeper explore the mechanism of RBR E3 ligases-mediated carcinogenesis and to develop useful inhibitors of these oncogenic E3 ligases for cancer therapy.
Collapse
Affiliation(s)
- Peter Wang
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yuyun Li
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA.
| |
Collapse
|
12
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 679] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
RNF144A functions as a tumor suppressor in breast cancer through ubiquitin ligase activity-dependent regulation of stability and oncogenic functions of HSPA2. Cell Death Differ 2019; 27:1105-1118. [PMID: 31406303 DOI: 10.1038/s41418-019-0400-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/19/2019] [Accepted: 07/22/2019] [Indexed: 01/27/2023] Open
Abstract
Deregulation of E3 ubiquitin ligases is intimately implicated in breast cancer pathogenesis and progression, but the underlying mechanisms still remain elusive. Here we report that RING finger protein 144A (RNF144A), a poorly characterized member of the RING-in-between-RING family of E3 ubiquitin ligases, functions as a tumor suppressor in breast cancer. RNF144A was downregulated in a subset of primary breast tumors and restoration of RNF144A suppressed breast cancer cell proliferation, colony formation, migration, invasion in vitro, tumor growth, and lung metastasis in vivo. In contrast, knockdown of RNF144A promoted malignant phenotypes of breast cancer cells. Quantitative proteomics and biochemical analysis revealed that RNF144A interacted with and targeted heat-shock protein family A member 2 (HSPA2), a putative oncoprotein that is frequently upregulated in human cancer and promotes tumor growth and progression, for ubiquitination and degradation. Notably, the ligase activity-defective mutants of RNF144A impaired its ability to induce ubiquitination and degradation of HSPA2, and to suppress breast cancer cell proliferation, migration, and invasion as compared with its wild-type counterpart. Moreover, RNF144A-mediated suppression of breast cancer cell proliferation, migration, and invasion was rescued by ectopic HSPA2 expression. Clinically, low RNF144A and high HSPA2 expression in breast cancer patients was correlated with aggressive clinicopathological characteristics and decreased overall and disease-free survival. Collectively, these findings reveal a previously unappreciated role for RNF144A in suppression of breast cancer growth and metastasis, and identify RNF144A as the first, to our knowledge, E3 ubiquitin ligase for HSPA2 in human cancer.
Collapse
|