1
|
Yang L, Yang J, Kleppe A, Danielsen HE, Kerr DJ. Personalizing adjuvant therapy for patients with colorectal cancer. Nat Rev Clin Oncol 2024; 21:67-79. [PMID: 38001356 DOI: 10.1038/s41571-023-00834-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
The current standard-of-care adjuvant treatment for patients with colorectal cancer (CRC) comprises a fluoropyrimidine (5-fluorouracil or capecitabine) as a single agent or in combination with oxaliplatin, for either 3 or 6 months. Selection of therapy depends on conventional histopathological staging procedures, which constitute a blunt tool for patient stratification. Given the relatively marginal survival benefits that patients can derive from adjuvant treatment, improving the safety of chemotherapy regimens and identifying patients most likely to benefit from them is an area of unmet need. Patient stratification should enable distinguishing those at low risk of recurrence and a high chance of cure by surgery from those at higher risk of recurrence who would derive greater absolute benefits from chemotherapy. To this end, genetic analyses have led to the discovery of germline determinants of toxicity from fluoropyrimidines, the identification of patients at high risk of life-threatening toxicity, and enabling dose modulation to improve safety. Thus far, results from analyses of resected tissue to identify mutational or transcriptomic signatures with value as prognostic biomarkers have been rather disappointing. In the past few years, the application of artificial intelligence-driven models to digital images of resected tissue has identified potentially useful algorithms that stratify patients into distinct prognostic groups. Similarly, liquid biopsy approaches involving measurements of circulating tumour DNA after surgery are additionally useful tools to identify patients at high and low risk of tumour recurrence. In this Perspective, we provide an overview of the current landscape of adjuvant therapy for patients with CRC and discuss how new technologies will enable better personalization of therapy in this setting.
Collapse
Affiliation(s)
- Li Yang
- Department of Gastroenterology, Sichuan University, Chengdu, China
| | - Jinlin Yang
- Department of Gastroenterology, Sichuan University, Chengdu, China
| | - Andreas Kleppe
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
- Centre for Research-based Innovation Visual Intelligence, UiT The Arctic University of Norway, Tromsø, Norway
| | - Håvard E Danielsen
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
- Radcliffe Department of Medicine, Oxford University, Oxford, UK
| | - David J Kerr
- Radcliffe Department of Medicine, Oxford University, Oxford, UK.
| |
Collapse
|
2
|
Koleva-Kolarova R, Vellekoop H, Huygens S, Versteegh M, Mölken MRV, Szilberhorn L, Zelei T, Nagy B, Wordsworth S, Tsiachristas A. Cost-effectiveness of extended DPYD testing before fluoropyrimidine chemotherapy in metastatic breast cancer in the UK. Per Med 2023; 20:339-355. [PMID: 37665240 DOI: 10.2217/pme-2022-0099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The aim of this study was to evaluate the cost-effectiveness of ToxNav©, a multivariant genetic test, to screen for DPYD followed by personalized chemotherapy dosing for metastatic breast cancer in the UK compared with no testing followed by standard dose, standard of care. In the main analysis, ToxNav was dominant over standard of care, producing 0.19 additional quality-adjusted life years and savings of £78,000 per patient over a lifetime. The mean additional quality-adjusted life years per person from 1000 simulations was 0.23 savings (95% CI: 0.22-0.24) at £99,000 (95% CI: £95-102,000). Varying input parameters independently by range of 20% was unlikely to change the results in the main analysis. The probabilistic sensitivity analysis showed ~97% probability of the ToxNav strategy to be dominant.
Collapse
Affiliation(s)
| | - Heleen Vellekoop
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Simone Huygens
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Matthijs Versteegh
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Maureen Rutten-van Mölken
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Erasmus School of Health Policy & Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - László Szilberhorn
- Syreon Research Institute, Budapest, Hungary
- Faculty of Social Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Zelei
- Syreon Research Institute, Budapest, Hungary
| | - Balázs Nagy
- Syreon Research Institute, Budapest, Hungary
| | - Sarah Wordsworth
- Health Economics Research Centre, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | - Apostolos Tsiachristas
- Health Economics Research Centre, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
3
|
Nagy B, Zelei T, Vellekoop H, Huygens S, Versteegh M, Mölken MRV, Koleva-Kolarova R, Tsiachristas A, Wordsworth S, Szilberhorn L. Lessons learned from the application of the HEcoPerMed guidance to three modeling case studies. Per Med 2023; 20:401-411. [PMID: 37694556 DOI: 10.2217/pme-2023-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background: The HEcoPerMed consortium developed a methodological guidance for the harmonization and improvement of economic evaluations in personalized medicine. Materials & methods: In three therapeutic areas, health economic models were developed to scrutinize the recommendations of the guidance. Results: Altogether, 20 of the 23 recommendations of the guidance were addressed by the models. Seven recommendations were applied in all studies, six in two of the studies and seven in one of the studies. Recommendations with an essential role on the final conclusions of the analyses were identified in each study. Conclusion: The guidance was found to be best used as a tool to identify and prioritize issues, verify solutions and justify decisions during the economic analysis of personalized interventions.
Collapse
Affiliation(s)
- Balázs Nagy
- Syreon Research Institute, Budapest, Hungary
- Center for Health Technology Assessment, Semmelweis University, Budapest, Hungary
| | - Tamás Zelei
- Syreon Research Institute, Budapest, Hungary
| | - Heleen Vellekoop
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, 3000 DR, Rotterdam, The Netherlands
| | - Simone Huygens
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, 3000 DR, Rotterdam, The Netherlands
| | - Matthijs Versteegh
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, 3000 DR, Rotterdam, The Netherlands
| | - Maureen Rutten-van Mölken
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, 3000 DR, Rotterdam, The Netherlands
- Erasmus School of Health Policy & Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | | | | | - Sarah Wordsworth
- Health Economics Research Centre, University of Oxford, Oxford, UK
| | | |
Collapse
|
4
|
Tsiachristas A, Vallance G, Koleva-Kolarova R, Taylor H, Solomons L, Rizzo G, Chaytor C, Miah J, Wordsworth S, Hassan AB. Can upfront DPYD extended variant testing reduce toxicity and associated hospital costs of fluoropyrimidine chemotherapy? A propensity score matched analysis of 2022 UK patients. BMC Cancer 2022; 22:458. [PMID: 35473510 PMCID: PMC9044697 DOI: 10.1186/s12885-022-09576-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Aim To independently assess the impact of mandatory testing using an extended DPYD variant panel (ToxNav®) and consequent dose adjustment of Capecitabine/5-FU on recorded quantitative toxicity, symptoms of depression, and hospital costs. Methods We used propensity score matching (PSM) to match 466 patients tested with ToxNav® with 1556 patients from a historical cohort, and performed regression analysis to estimate the impact of ToxNav®on toxicity, depression, and hospital costs. Results ToxNav® appeared to reduce the likelihood of experiencing moderate (OR: 0.59; 95%CI: 0.45–0.77) and severe anaemia (OR: 0.55; 95%CI: 0.33–0.90), and experience of pain for more than 4 days a week (OR: 0.50; 95%CI: 0.30–0.83), while it increased the likelihood of mild neutropenia (OR: 1.73; 95%CI: 1.27–2.35). It also reduced the cost of chemotherapy by 12% (95%CI: 3–31) or £9765, the cost of non-elective hospitalisation by 23% (95%CI: 8–36) or £2331, and the cost of critical care by 21% (95%CI: 2–36) or £1219 per patient. For the DPYD variant associated with critical risk of toxicity (rs3918290), the improved non-elective hospital costs were > £20,000, whereas variants associated with hand-foot syndrome toxicity had no detectable cost improvement. Conclusion Upfront testing of DPYD variants appears to reduce the toxicity burden of Capecitabine and 5-FU in cancer patients and can lead to substantial hospital cost savings, only if the dose management of the drugs in response to variants detected is standardised and regulated. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09576-3.
Collapse
Affiliation(s)
- Apostolos Tsiachristas
- Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK.
| | | | - Rositsa Koleva-Kolarova
- Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | | | | | | | | | - Junel Miah
- Oxford University Hospitals NHS Trust, Oxford, UK
| | - Sarah Wordsworth
- Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford, OX3 7LF, UK
| | - A Bassim Hassan
- Oxford University Hospitals NHS Trust, Oxford, UK.,Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
An Evaluation of the Diagnostic Accuracy of a Panel of Variants in DPYD and a Single Variant in ENOSF1 for Predicting Common Capecitabine Related Toxicities. Cancers (Basel) 2021; 13:cancers13071497. [PMID: 33805100 PMCID: PMC8037940 DOI: 10.3390/cancers13071497] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary 5-Fluorouracil (5-FU) is a chemotherapy drug that can cause severe toxicity in some patients. A protein, an action molecule in our cells, called dihydropyrimidine dehydrogenase, or DPD for short, is important in clearing 5-FU from the body. Some people have versions of DPD that do not clear 5-FU very well. This causes active drug to stay in the body too long, causing toxicities such as diarrhoea or low levels of blood cells important for fighting infections. Current guidelines identify four sequence changes in the gene that encodes DPD with high level evidence of an impact on protein activity. Our study aims to calculate the frequency of a set of variants identified in patients with DPD deficiency in patients that were part of a clinical trial called QUASAR 2. We go on to test how well the DPD deficiency variants and a set of common variants previously shown to be associated with 5-FU toxicity can predict a person’s risk of 5-Fluorouracil induced toxicity. Our research is important for working out the best way to identify patients at risk of toxicity so high risk patients can be given lower doses of 5-Fluorouracil or be treated with a different drug all together. Abstract Efficacy of 5-Fluorouracil (5-FU)-based chemotherapy is limited by significant toxicity. Tests based upon variants in the Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines with high level evidence of a link to dihydropyrimidine dehydrogenase (DPD) phenotype and 5-FU toxicity are available to identify patients at high risk of severe adverse events (AEs). We previously reported associations between rs1213215, rs2612091, and NM_000110.3:c.1906-14763G>A (rs12022243) and capecitabine induced toxicity in clinical trial QUASAR 2. We also identified patients with DPD deficiency alleles NM_000110.3: c.1905+1G>A, NM_000110.3: c.2846C>T, NM_000110.3:c.1679T>G and NM_000110.3:c.1651G>A. We have now assessed the frequency of thirteen additional DPYD deficiency variants in 888 patients from the QUASAR 2 clinical trial. We also compared the area under the curve (AUC)—a measure of diagnostic accuracy—of the high-level evidence variants from the CPIC guidelines plus and minus additional DPYD deficiency variants and or common variants associated with 5-FU toxicity. Including additional DPYD deficiency variants retained good diagnostic accuracy for serious adverse events (AEs) and improved sensitivity for predicting grade 4 haematological toxicities (sensitivity 0.75, specificity 0.94) but the improvement in AUC for this toxicity was not significant. Larger datasets will be required to determine the benefit of including additional DPYD deficiency variants not observed here. Genotyping two common alleles statistically significantly improves AUC for prediction of risk of HFS and may be clinically useful (AUC difference 0.177, sensitivity 0.84, specificity 0.31).
Collapse
|
6
|
Lee LYW, Starkey T, Sivakumar S, Fotheringham S, Mozolowski G, Shearwood V, Palles C, Camilleri P, Church D, Kerr R, Kerr D. ToxNav germline genetic testing and PROMinet digital mobile application toxicity monitoring: Results of a prospective single-center clinical utility study-PRECISE study. Cancer Med 2019; 8:6305-6314. [PMID: 31486228 PMCID: PMC6797583 DOI: 10.1002/cam4.2529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION In this study (PRECISE), we assess the clinical utility of a germline DNA sequencing-based test (ToxNav) for mutations in DPYD and ENOSF1 genes to alter clinician-prescribed fluoropyrimidine doses and the use of a digital application (PROMinet) to record patient-reported chemotherapy toxicity. MATERIALS AND METHODS Adult patients with a histological diagnosis of colorectal cancer (CRC) who consented to fluoropyrimidine-based chemotherapy were recruited prospectively and given a digital application to monitor and record associated toxicities. Patient samples were analyzed for 18 germline coding variants in DPYD and 1 ENOSF1 variant. RESULTS Genetic testing was performed for 60 patients and identified one patient at increased risk of fluoropyrimidine-based toxicities. Uptake of genetic testing was high and results were available on average 17 days from initial clinical encounter. Patient-reported chemotherapy toxicity identified differences in 5-fluorouracil vs capecitabine regime profiles and identified profiles associated with subsequent need for chemotherapy dose reduction and hospital admission. DISCUSSION The PRECISE clinical trial demonstrated that a germline DNA sequencing-based test can provide clinically relevant information to alter clinicians' fluoropyrimidine prescription. The study also obtained high volume, high granularity patient-reported toxicity data that might allow the improvement and personalization of chemotherapy management.
Collapse
Affiliation(s)
- Lennard Y. W. Lee
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Thomas Starkey
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | | | | | | | | | - Claire Palles
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | | | - David Church
- Department of OncologyUniversity of OxfordOxfordUK
| | - Rachel Kerr
- Department of OncologyUniversity of OxfordOxfordUK
| | - David Kerr
- Oxford Cancer BiomarkersOxford Science ParkOxfordUK
- Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|