1
|
Colloca A, Donisi I, Anastasio C, Balestrieri ML, D’Onofrio N. Metabolic Alteration Bridging the Prediabetic State and Colorectal Cancer. Cells 2024; 13:663. [PMID: 38667278 PMCID: PMC11049175 DOI: 10.3390/cells13080663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Prediabetes and colorectal cancer (CRC) represent compelling health burdens responsible for high mortality and morbidity rates, sharing several modifiable risk factors. It has been hypothesized that metabolic abnormalities linking prediabetes and CRC are hyperglycemia, hyperinsulinemia, and adipokines imbalance. The chronic stimulation related to these metabolic signatures can favor CRC onset and development, as well as negatively influence CRC prognosis. To date, the growing burden of prediabetes and CRC has generated a global interest in defining their epidemiological and molecular relationships. Therefore, a deeper knowledge of the metabolic impairment determinants is compelling to identify the pathological mechanisms promoting the onset of prediabetes and CRC. In this scenario, this review aims to provide a comprehensive overview on the metabolic alterations of prediabetes and CRC as well as an overview of recent preventive and therapeutic approaches for both diseases, focusing on the role of the metabolic state as a pivotal contributor to consider for the development of future preventive and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (I.D.); (C.A.); (M.L.B.)
| |
Collapse
|
2
|
Deng H, Qian X, Zhang Y, Yu W, Yang P. Metformin Increases the Response of Cholangiocarcinoma Cells to Gemcitabine by Suppressing Pyruvate Kinase M2 to Activate Mitochondrial Apoptosis. Dig Dis Sci 2024; 69:476-490. [PMID: 38170336 DOI: 10.1007/s10620-023-08210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignant tumor with a high mortality rate. Resistance to chemotherapy remains a major challenge related to cancer treatment, and increasing the sensitivity of cancer cells to therapeutic drugs is a major focus of cancer treatment. AIMS We purposed to explore the role of Metformin in CCA involved in chemotherapeutic sensitivity and Pyruvate kinase M2 (PKM2) through regulating mitochondrial apoptosis in the present study. METHODS CCA cell lines of HCC9810 and RBE were treated with Metformin companied with antagonists or agonists of PKM2, cells sensitivity to Gemcitabine, cell migration and invasion along with apoptosis, which is mediated by JC-1 and LDH were assayed. RESULTS Our results indicated that Metformin and Gemcitabine exhibit synergistic effect on inhibition of cholangiocarcinoma cell viability, cell migration and invasion as well as promotion apoptosis of cholangiocarcinoma cells. In vivo, Metformin combined with Gemcitabine has cooperation in inhibiting the growth of cholangiocarcinoma cell-derived tumors. Moreover, Metformin and Gemcitabine inhibited expression of PKM2 and PDHB in HCC9810 and RBE. CONCLUSION Our study suggested that Metformin may increase the response of cholangiocarcinoma cells to Gemcitabine by suppressing PKM2 to activate mitochondrial apoptosis.
Collapse
Affiliation(s)
- Haishan Deng
- Department of General Surgery, Armed Police Coast Guard Corps Hospital, Jiaxing, Zhejiang, China
| | - Xiaomei Qian
- Jiaxing Shuguang Cosmetology Hospital, Jiaxing, Zhejiang, China
| | - Yongtao Zhang
- Department of General Surgery, Armed Police Coast Guard Corps Hospital, Jiaxing, Zhejiang, China
| | - Wenlong Yu
- The Second Department of Biliary Duct, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Ping Yang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou, 570102, Hainan, China.
| |
Collapse
|
3
|
Wu B, Li P, Qiu E, Chen J. Metformin alleviates adriamycin resistance of osteosarcoma by declining YY1 to inhibit MDR1 transcriptional activity. BMC Pharmacol Toxicol 2023; 24:50. [PMID: 37828612 PMCID: PMC10571298 DOI: 10.1186/s40360-023-00685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 09/02/2023] [Indexed: 10/14/2023] Open
Abstract
Chemotherapy resistance hinders the successful treatment of osteosarcoma (OS) to some extent. Previous studies have confirmed that metformin (Met) enhances apoptosis induced by chemotherapeutic drugs, but the underlying mechanism remains unclear. To establish adriamycin (ADM)-resistant MG-63 (MG-63/ADM) cells, the dosage of ADM was progressively increased. The results of qRT-PCR and Western blotting demonstrated that the expression level of Yin Yang 1 (YY1) and multi-drug resistance-1 (MDR1) in MG-63/ADM cells were remarkably increased compared with those in MG-63 cells. Met dramatically enhanced ADM cytotoxicity and accelerated apoptosis of MG-63/ADM cells. Moreover, Met suppressed the expressions of YY1 and MDR1 in MG-63/ADM cells. YY1 promoted its transcriptional expression by directly binding to the MDR1 promoter. Furthermore, the effects of Met on ADM sensitivity in MG-63/ADM cells was reversed due to overexpression of YY1 or MDR1. Collectively, these findings suggested that Met inhibited YY1/MDR1 pathway to reverse ADM resistance in OS, providing a new insight into the mechanism of Met in ADM resistance of OS.
Collapse
Affiliation(s)
- Bowen Wu
- Department of Orthopedics, Zhuzhou central hospital, 116 Changjiangnan Road, Tianyuan District, Zhuzhou, 412007, Hunan, China.
| | - Peng Li
- Department of Orthopedics, Zhuzhou central hospital, 116 Changjiangnan Road, Tianyuan District, Zhuzhou, 412007, Hunan, China
| | - Eryue Qiu
- Trauma center, Zhuzhou central hospital, Zhuzhou, 412007, Hunan, China
| | - Jian Chen
- Department of Orthopedics, Zhuzhou central hospital, 116 Changjiangnan Road, Tianyuan District, Zhuzhou, 412007, Hunan, China
| |
Collapse
|
4
|
Huang Z, Shen Y, Fan X, Guo Q, Ma W. Yinzhihuang injection induces apoptosis and suppresses tumor growth in acute myeloid leukemia cells. PLoS One 2023; 18:e0289697. [PMID: 37816017 PMCID: PMC10564230 DOI: 10.1371/journal.pone.0289697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/23/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND The unmet needs in treating acute myeloid leukemia(AML) promote us to look for more effective and less toxic therapies. In this study, we discovered that Yinzhihuang injection(YZHI), a traditional Chinese patent medicine for hepatitis treatment, suppressed the growth of AML cells. METHOD Anti-proliferative activities of YZHI were measured by CCK-8 assay. Cell cycle arrest was evaluated by PI staining, and apoptosis was evaluated by annexin V/PI staining. To explore the cell cycle arrest and cell death mechanism induced by YZHI, we assessed a series of assays, including measurements of the protein expression and cellular ATP. The anti-tumor activity was further demonstrated in nude mice. RESULTS Flow cytometric and biochemical analysis revealed that YZHI caused cell cycle arrest and induced apoptosis in the AML HL-60 cells. Mechanistically, YZHI activated AMPK by promoting phosphorylation of the kinase. The active AMPK negatively regulated the downstream target mTORC1, leading to the inhibition of cell proliferation and induction of apoptosis. Pretreatment with the AMPK inhibitor compound C rescued YZHI induced apoptosis and partially restored cell proliferation of HL-60. Consistent with the data in vitro, YZHI obviously suppressed subcutaneous xenograft growth in nude mice. CONCLUSIONS In a word, our data suggest that YZHI can be repurposed for the treatment of AML, which is worthy of further clinical evaluation.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yunfu Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xianming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qulian Guo
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
5
|
Buckley CE, O’Brien RM, Nugent TS, Donlon NE, O’Connell F, Reynolds JV, Hafeez A, O’Ríordáin DS, Hannon RA, Neary P, Kalbassi R, Mehigan BJ, McCormick PH, Dunne C, Kelly ME, Larkin JO, O’Sullivan J, Lynam-Lennon N. Metformin is a metabolic modulator and radiosensitiser in rectal cancer. Front Oncol 2023; 13:1216911. [PMID: 37601689 PMCID: PMC10435980 DOI: 10.3389/fonc.2023.1216911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Resistance to neoadjuvant chemoradiation therapy, is a major challenge in the management of rectal cancer. Increasing evidence supports a role for altered energy metabolism in the resistance of tumours to anti-cancer therapy, suggesting that targeting tumour metabolism may have potential as a novel therapeutic strategy to boost treatment response. In this study, the impact of metformin on the radiosensitivity of colorectal cancer cells, and the potential mechanisms of action of metformin-mediated radiosensitisation were investigated. Metformin treatment was demonstrated to significantly radiosensitise both radiosensitive and radioresistant colorectal cancer cells in vitro. Transcriptomic and functional analysis demonstrated metformin-mediated alterations to energy metabolism, mitochondrial function, cell cycle distribution and progression, cell death and antioxidant levels in colorectal cancer cells. Using ex vivo models, metformin treatment significantly inhibited oxidative phosphorylation and glycolysis in treatment naïve rectal cancer biopsies, without affecting the real-time metabolic profile of non-cancer rectal tissue. Importantly, metformin treatment differentially altered the protein secretome of rectal cancer tissue when compared to non-cancer rectal tissue. Together these data highlight the potential utility of metformin as an anti-metabolic radiosensitiser in rectal cancer.
Collapse
Affiliation(s)
- Croí E. Buckley
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| | - Rebecca M. O’Brien
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| | - Timothy S. Nugent
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Department of Surgery, Beacon Hospital, Dublin, Ireland
| | - Noel E. Donlon
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Department of Surgery, Beacon Hospital, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - Fiona O’Connell
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| | - John V. Reynolds
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| | - Adnan Hafeez
- Department of Surgery, Beacon Hospital, Dublin, Ireland
| | | | | | - Paul Neary
- Department of Surgery, Beacon Hospital, Dublin, Ireland
| | - Reza Kalbassi
- Department of Surgery, Beacon Hospital, Dublin, Ireland
| | - Brian J. Mehigan
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - Paul H. McCormick
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - Cara Dunne
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - Michael E. Kelly
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - John O. Larkin
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - Jacintha O’Sullivan
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Shen Q, Yang L, Li C, Wang T, Lv J, Liu W, Lin Y, Yin Y, Tao K. Metformin promotes cGAS/STING signaling pathway activation by blocking AKT phosphorylation in gastric cancer. Heliyon 2023; 9:e18954. [PMID: 37600406 PMCID: PMC10432977 DOI: 10.1016/j.heliyon.2023.e18954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
The cGAS/STING signaling pathway plays a pivotal role in regulating innate immunity. Emerging novel drugs aim to regulate the anti-tumor immune response by activating innate immunity. The anti-diabetic drug metformin has been reported to exhibit anti-cancer effect against various types of cancer. However, the role of metformin in regulating the cGAS/STING signaling pathway in gastric cancer remains unknown. In our study, we first used bioinformatic analysis to detect that metformin is closely related to tumor immunity in multiple tumors. Next, we validated the function of metformin in activating the cGAS/STING signaling pathway in gastric cancer cell lines. In addition, KEGG pathway enrichment analysis showed that metformin is negatively correlated with the PI3K/AKT signaling pathway in gastric cancer. We further verified that metformin activates the cGAS/STING signaling pathway by blocking AKT phosphorylation. Moreover, we found that metformin regulates the AKT signaling pathway by mediating the transcription factor SOX2. Thus, our study indicates that metformin activates the cGAS/STING signaling pathway by suppressing SOX2/AKT and has promising potential in gastric cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Chengguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Lv
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Lin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Yu D, Chang Z, Liu X, Chen P, Zhang H, Qin Y. Macrophage-derived exosomes regulate gastric cancer cell oxaliplatin resistance by wrapping circ 0008253. Cell Cycle 2023; 22:705-717. [PMID: 36416404 PMCID: PMC9980452 DOI: 10.1080/15384101.2022.2146839] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/02/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Oxaliplatin (OXA) is a first-line chemotherapy drug for gastric cancer. We aimed to investigate the effect of circ 0008253, contained in M2 polarized macrophage-derived exosomes, on OXA resistance of gastric carcinoma cells. Flow cytometry was performed to detect the differentiation of macrophages and cell apoptosis. Cell Counting Kit-8 assay was conducted to examine the cell viability. Transmission electron microscopy, Nanoparticle Tracking Analysis, Western bolt, and Immunofluorescence were carried out. Cell proliferation was detected with a colony formation experiment. Levels of CD206, Arg1, IL-10, and TGF-β were increased in M2 polarized macrophages. Cell viability was decreased gradually with the increase of time and OXA concentration. Apoptosis of gastric carcinoma cells was decreased after co-culture with M2-polarized macrophages. Exosomes isolated from M2-polarized macrophages (M2-Exos) could be co-located with gastric carcinoma cells. M2-Exos enhanced drug resistance, reduced apoptosis and OXA resistance. Bioinformatics analysis showed that circ 0008253 could be transferred from M2-Exos to gastric carcinoma cells. Overexpressing circ 0008253 increased cell viability, tumor size, and ABCG2 levels, decreased OXA sensitivity. Circ 0008253, contained in M2-Exos, was directly transferred from tumor-associated macrophage to gastric carcinoma cells, finally enhancing OXA resistance.
Collapse
Affiliation(s)
- Dandan Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Zhiwei Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Xiaolei Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Pengfei Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Huixian Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
8
|
Qiu Z, Qiu S, Mao W, Lin W, Peng Q, Chang H. LOXL2 reduces 5-FU sensitivity through the Hedgehog/BCL2 signaling pathway in colorectal cancer. Exp Biol Med (Maywood) 2023; 248:457-468. [PMID: 36573458 PMCID: PMC10281539 DOI: 10.1177/15353702221139203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/16/2022] [Indexed: 09/29/2023] Open
Abstract
Elevated expression of lysyl oxidase-like 2 (LOXL2) contributes to the malignant tumor progression in multiple cancers. However, the role of LOXL2 in the 5-fluorouracil (5-FU) resistance of colorectal cancer (CRC) remains unclear. This study aimed to explore the effects of LOXL2 on 5-FU sensitivity in CRC. The mRNA and protein levels of LOXL2 were explored in public databases by bioinformatics, validated in clinical tissues using immunohistochemistry, and detected in 5-FU treated cell lines. The 50% inhibitory concentrations (IC50) values were quantified based on the cell viability at different concentrations of 5-FU with CCK-8 assays. Colony formation and flow cytometry assays were performed to measure the proliferation and apoptosis rates. Gene set enrichment and correlation analyses were conducted to identify the probable mechanism of LOXL2 in TCGA samples. Critical molecules of the Hedgehog signaling pathway and anti-apoptotic BCL2 in protein levels were detected with Western blotting. It concluded that LOXL2 was up-regulated and positively linked to the unfavorable prognosis of CRC patients. The LOXL2 expression increased with the rising 5-FU concentrations, especially at 20 and 40 μM. Elevated LOXL2 promoted the resistance to 5-FU, augmented the proliferation, and inhibited 5-FU-induced apoptosis of CRC cells. LOXL2 activated the Hedgehog signaling pathway by promoting the expression of SMO, GLI1, and GLI2, leading to the upregulation of downstream target gene BCL2 in CRC cells. Moreover, the Hedgehog signaling pathway inhibitor cyclopamine blocked the BCL2 upregulation mediated by LOXL2. This study has demonstrated that LOXL2 can reduce 5-FU sensitivity through the Hedgehog/BCL2 signaling pathway in CRC.
Collapse
Affiliation(s)
- Zhize Qiu
- Department of General Surgery, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai 519000, China
| | - Shiqi Qiu
- Department of General Surgery, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai 519000, China
| | - Wenli Mao
- Department of General Internal Medicine, The People’s Hospital of Xiangzhou District, Zhuhai 519000, China
| | - Wu Lin
- Department of General Surgery, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai 519000, China
| | - Qiqi Peng
- Department of General Surgery, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai 519000, China
| | - Hao Chang
- Department of Cancer Research, Hanyu Biomed Center Beijing, Beijing, 102488, China
| |
Collapse
|
9
|
Salovska B, Gao E, Müller‐Dott S, Li W, Cordon CC, Wang S, Dugourd A, Rosenberger G, Saez‐Rodriguez J, Liu Y. Phosphoproteomic analysis of metformin signaling in colorectal cancer cells elucidates mechanism of action and potential therapeutic opportunities. Clin Transl Med 2023; 13:e1179. [PMID: 36781298 PMCID: PMC9925373 DOI: 10.1002/ctm2.1179] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND The biguanide drug metformin is a safe and widely prescribed drug for type 2 diabetes. Interestingly, hundreds of clinical trials have been set to evaluate the potential role of metformin in the prevention and treatment of cancer including colorectal cancer (CRC). However, the "metformin signaling" remains controversial. AIMS AND METHODS To interrogate cell signaling induced by metformin in CRC and explore the druggability of the metformin-rewired phosphorylation network, we performed integrative analysis of phosphoproteomics, bioinformatics, and cell proliferation assays on a panel of 12 molecularly heterogeneous CRC cell lines. Using the high-resolute data-independent analysis mass spectrometry (DIA-MS), we monitored a total of 10,142 proteins and 56,080 phosphosites (P-sites) in CRC cells upon a short- and a long-term metformin treatment. RESULTS AND CONCLUSIONS We found that metformin tended to primarily remodel cell signaling in the long-term and only minimally regulated the total proteome expression levels. Strikingly, the phosphorylation signaling response to metformin was highly heterogeneous in the CRC panel, based on a network analysis inferring kinase/phosphatase activities and cell signaling reconstruction. A "MetScore" was determined to assign the metformin relevance of each P-site, revealing new and robust phosphorylation nodes and pathways in metformin signaling. Finally, we leveraged the metformin P-site signature to identify pharmacodynamic interactions and confirmed a number of candidate metformin-interacting drugs, including navitoclax, a BCL-2/BCL-xL inhibitor. Together, we provide a comprehensive phosphoproteomic resource to explore the metformin-induced cell signaling for potential cancer therapeutics. This resource can be accessed at https://yslproteomics.shinyapps.io/Metformin/.
Collapse
Affiliation(s)
- Barbora Salovska
- Yale Cancer Biology InstituteYale UniversityWest HavenConnecticutUSA
| | - Erli Gao
- Yale Cancer Biology InstituteYale UniversityWest HavenConnecticutUSA
| | - Sophia Müller‐Dott
- Institute for Computational BiomedicineFaculty of MedicineHeidelberg University HospitalBioquant, Heidelberg UniversityHeidelbergGermany
| | - Wenxue Li
- Yale Cancer Biology InstituteYale UniversityWest HavenConnecticutUSA
| | | | - Shisheng Wang
- West China‐Washington Mitochondria and Metabolism Research CenterWest China HospitalSichuan UniversityChengduChina
| | - Aurelien Dugourd
- Institute for Computational BiomedicineFaculty of MedicineHeidelberg University HospitalBioquant, Heidelberg UniversityHeidelbergGermany
| | | | - Julio Saez‐Rodriguez
- Institute for Computational BiomedicineFaculty of MedicineHeidelberg University HospitalBioquant, Heidelberg UniversityHeidelbergGermany
| | - Yansheng Liu
- Yale Cancer Biology InstituteYale UniversityWest HavenConnecticutUSA
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
10
|
Ma SC, Zhang JQ, Yan TH, Miao MX, Cao YM, Cao YB, Zhang LC, Li L. Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med 2023. [PMID: 36645225 DOI: 10.1002/cam4.5594] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/17/2023] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy with high morbidity and fatality. Chemotherapy, as traditional therapy for CRC, has exerted well antitumor effect and greatly improved the survival of CRC patients. Nevertheless, chemoresistance is one of the major problems during chemotherapy for CRC and significantly limits the efficacy of the treatment and influences the prognosis of patients. To overcome chemoresistance in CRC, many strategies are being investigated. Here, we review the common and novel measures to combat the resistance, including drug repurposing (nonsteroidal anti-inflammatory drugs, metformin, dichloroacetate, enalapril, ivermectin, bazedoxifene, melatonin, and S-adenosylmethionine), gene therapy (ribozymes, RNAi, CRISPR/Cas9, epigenetic therapy, antisense oligonucleotides, and noncoding RNAs), protein inhibitor (EFGR inhibitor, S1PR2 inhibitor, and DNA methyltransferase inhibitor), natural herbal compounds (polyphenols, terpenoids, quinones, alkaloids, and sterols), new drug delivery system (nanocarriers, liposomes, exosomes, and hydrogels), and combination therapy. These common or novel strategies for the reversal of chemoresistance promise to improve the treatment of CRC.
Collapse
Affiliation(s)
- Shu-Chang Ma
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Jia-Qi Zhang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Hua Yan
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ming-Xing Miao
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ye-Min Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Chen Y, Xu M, Ye Q, Xiang J, Xue T, Yang T, Liu L, Yan B. Irregular delay of adjuvant chemotherapy correlated with poor outcome in stage II-III colorectal cancer. BMC Cancer 2022; 22:670. [PMID: 35715761 PMCID: PMC9206266 DOI: 10.1186/s12885-022-09767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
AIMS Adjuvant chemotherapy (ACT) plays an important role in improving the survival of stage II-III colorectal cancer (CRC) patients after curative surgery. However, the prognostic role of irregular delay of ACT (IDacT) for these patients has been less studied. MATERIALS AND METHODS A total of 117 stage II-III CRC patients who underwent radical resection and received at least 3 months ACT were enrolled retrospectively. The significance of IDacT, including total delay (TD) and delay per cycle (DpC), in predicting disease-free survival (DFS) was determined using receiver operating characteristic curve (ROC) analysis. The survival differences between the TD, DpC-short and DpC-long subgroups were tested using Kaplan-Meier analysis, and risk factors for prognosis were determined using a Cox proportional hazards model. RESULTS Using 35.50 and 3.27 days as the optimal cut-off points for TD and DpC, respectively, ROC analysis revealed that TD and DpC had sensitivities of 43.60% and 59.00% and specificities of 83.30% and 62.80%, respectively, in predicting DFS (both P < 0.05). No differences in the clinicopathological parameters were found between the TD, DpC-short or -long subgroups except histological differentiation in different TD subgroups and combined T stages in different DpC subgroups (both P = 0.04). Patients in the TD or DpC-long group exhibited significantly worse survival than in the -short group (TD: Log rank = 9.11, P < 0.01; DpC: Log rank = 6.09, P = 0.01). DpC was an independent risk factor for prognosis (HR = 2.54, 95% CI: 1.32-4.88, P = 0.01). CONCLUSIONS IDacT had a profound effect on the outcome for stage II-III CRC. Although TD and DpC were significant for the prognosis, DpC was more robust, and patients who presented DpC for a long time had a significantly worse DFS.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of General Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya City, Hainan, P.R. China
| | - Mingyue Xu
- Department of General Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya City, Hainan, P.R. China
| | - Qianwen Ye
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya City, Hainan province, 572000, P.R. China
| | - Jia Xiang
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya City, Hainan province, 572000, P.R. China
| | - Tianhui Xue
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya City, Hainan province, 572000, P.R. China
| | - Tao Yang
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya City, Hainan province, 572000, P.R. China
| | - Long Liu
- Department Traditional Chinese Medicine, Tianyou Hospital of Tongji University, No. 528 of Zhennan Road, Putuo District, Shanghai, 200331, P.R. China.
| | - Bing Yan
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya City, Hainan province, 572000, P.R. China.
| |
Collapse
|
12
|
Luteolin Synergistically Enhances Antitumor Activity of Oxaliplatin in Colorectal Carcinoma via AMPK Inhibition. Antioxidants (Basel) 2022; 11:antiox11040626. [PMID: 35453311 PMCID: PMC9030203 DOI: 10.3390/antiox11040626] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Luteolin is a naturally-occurring polyphenolic compound that is known to have antioxidative and antitumor activities in vitro. This study aimed to examine the in vivo anticancer efficacy of luteolin in conjunction with oxaliplatin treatment using a colorectal carcinoma xenograft mouse model. HCT116 human colorectal carcinoma cells were subcutaneously implanted into BALB/c nude mice, followed by the intraperitoneal administration of luteolin at a dose of 50 mg/kg body weight (BW)/day with or without oxaliplatin at a dose of 10 mg/kg BW/day three times per week for a total of 3 weeks. The combined luteolin and oxaliplatin treatment resulted in the synergistic suppression of the growth of HCT116 xenograft tumors when compared to treatment with luteolin or oxaliplatin alone. In addition, the combined treatment significantly increased the expression of cleaved PARP and p53 in the xenograft tumors compared with the vehicle control, but only marginally affected the level of heme oxygenase-1 (HO-1). These results indicated that luteolin treatment retarded oxaliplatin-induced tumor growth by facilitating apoptotic cell death and inhibiting HO-1-mediated cytoprotection. Therefore, these findings suggest the synergistic potential of dietary luteolin in conjunction with conventional chemotherapy for the treatment of colorectal cancer.
Collapse
|
13
|
Almaimani RA, Aslam A, Ahmad J, El-Readi MZ, El-Boshy ME, Abdelghany AH, Idris S, Alhadrami M, Althubiti M, Almasmoum HA, Ghaith MM, Elzubeir ME, Eid SY, Refaat B. In Vivo and In Vitro Enhanced Tumoricidal Effects of Metformin, Active Vitamin D 3, and 5-Fluorouracil Triple Therapy against Colon Cancer by Modulating the PI3K/Akt/PTEN/mTOR Network. Cancers (Basel) 2022; 14:1538. [PMID: 35326689 PMCID: PMC8946120 DOI: 10.3390/cancers14061538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022] Open
Abstract
Chemoresistance to 5-fluorouracil (5-FU) is common during colorectal cancer (CRC) treatment. This study measured the chemotherapeutic effects of 5-FU, active vitamin D3 (VD3), and/or metformin single/dual/triple regimens as complementary/alternative therapies. Ninety male mice were divided into: negative and positive (PC) controls, and 5-FU, VD3, Met, 5-FU/VD3, 5-FU/Met, VD3/Met, and 5-FU/VD3/Met groups. Treatments lasted four weeks following CRC induction by azoxymethane. Similar regimens were also applied in the SW480 and SW620 CRC cell lines. The PC mice had abundant tumours, markedly elevated proliferation markers (survivin/CCND1) and PI3K/Akt/mTOR, and reduced p21/PTEN/cytochrome C/caspase-3 and apoptosis. All therapies reduced tumour numbers, with 5-FU/VD3/Met being the most efficacious regimen. All protocols decreased cell proliferation markers, inhibited PI3K/Akt/mTOR molecules, and increased proapoptotic molecules with an apoptosis index, and 5-FU/VD3/Met revealed the strongest effects. In vitro, all therapies equally induced G1 phase arrest in SW480 cells, whereas metformin-alone showed maximal SW620 cell numbers in the G0/G1 phase. 5-FU/Met co-therapy also showed the highest apoptotic SW480 cell numbers (13%), whilst 5-FU/VD3/Met disclosed the lowest viable SW620 cell percentages (81%). Moreover, 5-FU/VD3/Met revealed maximal inhibitions of cell cycle inducers (CCND1/CCND3), cell survival (BCL2), and the PI3K/Akt/mTOR molecules alongside the highest expression of cell cycle inhibitors (p21/p27), proapoptotic markers (BAX/cytochrome C/caspase-3), and PTEN in both cell lines. In conclusion, metformin monotherapy was superior to VD3, whereas the 5-FU/Met protocol showed better anticancer effects relative to the other dual therapies. However, the 5-FU/VD3/Met approach displayed the best in vivo and in vitro tumoricidal effects related to cell cycle arrest and apoptosis, justifiably by enhanced modulations of the PI3K/PTEN/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Riyad Adnan Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia; (R.A.A.); (M.Z.E.-R.); (M.A.); (M.E.E.); (S.Y.E.)
| | - Akhmed Aslam
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia; (R.A.A.); (M.Z.E.-R.); (M.A.); (M.E.E.); (S.Y.E.)
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit 71524, Egypt
| | - Mohamed E. El-Boshy
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Abdelghany H. Abdelghany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
- Department of Anatomy, Faculty of Medicine, Alexandria University, Alexandria 21544, Egypt
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| | - Mai Alhadrami
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia;
| | - Mohammad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia; (R.A.A.); (M.Z.E.-R.); (M.A.); (M.E.E.); (S.Y.E.)
| | - Hussain A. Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| | - Mazen M. Ghaith
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| | - Mohamed E. Elzubeir
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia; (R.A.A.); (M.Z.E.-R.); (M.A.); (M.E.E.); (S.Y.E.)
| | - Safaa Yehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia; (R.A.A.); (M.Z.E.-R.); (M.A.); (M.E.E.); (S.Y.E.)
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| |
Collapse
|
14
|
Jiang X, Wang J, Wang M, Xuan M, Han S, Li C, Li M, Sun XF, Yu W, Zhao Z. ITGB4 as a novel serum diagnosis biomarker and potential therapeutic target for colorectal cancer. Cancer Med 2021; 10:6823-6834. [PMID: 34414684 PMCID: PMC8495272 DOI: 10.1002/cam4.4216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose To develop new and effective biomarkers for the diagnosis of colorectal cancer (CRC). Experimental design The serum expression of ITGB4 (49 CRC and 367 HC) was detected by enzyme‐linked immunosorbent assay (ELISA), and its diagnostic value was analyzed using the receiver operating characteristic (ROC) curve. The sensitivity and specificity of ITGB4 in CRC diagnosis were calculated through statistical analysis. The optimal clinical cutoff value was calculated using the Youden index, and diagnostic efficacy was analyzed in a larger serum sample (98 CRC and 1631 non‐CRC). The expression of ITGB4 was measured by CyTOF (cell experimental technology) at the single‐cell level, and characteristics were analyzed using viSNE and SPADE TREE. Results Serum ITGB4 and CEA levels were significantly higher in CRC patients than in HC and non‐CRC patients. The use of serum ITGB4 levels for the diagnosis of CRC has a high sensitivity (79%) but not high specificity when the clinical cutoff value was 0.70 ng/mL. However, the optimal cutoff value was 1.6 ng/mL with 86.2% specificity and 52.0% sensitivity, and the diagnostic efficacy was greatly improved with high specificity (82.0%) and sensitivity (71.4%) when combined with CEA. ITGB4 expression characteristics were measured and related to the expression of EpCAM, Ck8/18, and perforin at the single‐cell level. Single‐cell analysis showed that cell clusters with low expression of CK8/18 and ITGB4 were more sensitive to 5FU and radiotherapy (RT). Conclusions ITGB4 is an effective diagnostic serum biomarker and a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Xia Jiang
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.,Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Jia Wang
- Department of Internal Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Mengyu Wang
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Mingda Xuan
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Shuangshuang Han
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Chao Li
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Meng Li
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.,The First Department of Colorectal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Weifang Yu
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.,Department of Endoscopy Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Zengren Zhao
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.,Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
15
|
Corrigendum. Cancer Med 2021; 10:2526-2527. [PMID: 33749166 PMCID: PMC7982612 DOI: 10.1002/cam4.3702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
16
|
Jiang S, Lu Q. A new contribution for an old drug: Prospect of metformin in colorectal oncotherapy. J Cancer Res Ther 2021; 17:1608-1617. [PMID: 35381729 DOI: 10.4103/jcrt.jcrt_1824_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Khodaei F, Hosseini SM, Omidi M, Hosseini SF, Rezaei M. Cytotoxicity of metformin against HT29 colon cancer cells contributes to mitochondrial Sirt3 upregulation. J Biochem Mol Toxicol 2020; 35:e22662. [PMID: 33147367 DOI: 10.1002/jbt.22662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/07/2020] [Accepted: 10/20/2020] [Indexed: 12/30/2022]
Abstract
Cancer and diabetes, the two mitochondria-related diseases, have recently been linked to silent mating-type information regulation 2 homolog 3 (SIRT3) activity irregularities. In this study, the effect of metformin, an antidiabetic with anticancer properties, has been evaluated on mitochondrial functionality markers, cell death pathways, and SIRT3 enzyme activity in the colon cancer cell line, HT-29, and human embryonic kidney cells (HEK 293). HT-29 cells were treated with metformin (5, 10, 20, 40, and 80 µM) for 24, 48, and 72 h for measuring the IC50 concentration. Reactive oxygen species (ROS) production, apoptosis, mitochondrial membrane potential, SIRT3 activity, and expression were evaluated against the colon cancer cell line, HT-29. Results indicated a higher ROS production at 6 than 12 h with metformin treatment. Metformin modified the mitochondrial membrane potential, resulting in cell death induction. Results from SIRT3 activity and expression showed that metformin increased its activity and expression in cancer cells. In conclusion, metformin in HT-29 cells disturbed the mitochondrial activity via increased ROS levels and SIRT3 activity, and these rapid modifications may play a key role in its cytotoxic property.
Collapse
Affiliation(s)
- Forouzan Khodaei
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China.,Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed M Hosseini
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Omidi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Infertility reseaerch center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Seyede F Hosseini
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
18
|
Clinical application and mechanism of traditional Chinese medicine in treatment of lung cancer. Chin Med J (Engl) 2020; 133:2987-2997. [PMID: 33065603 PMCID: PMC7752681 DOI: 10.1097/cm9.0000000000001141] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a malignant tumor characterized by a rapid proliferation rate, less survivability, high mortality, and metastatic potential. This review focuses on updated research about the clinical application of traditional Chinese medicine (TCM) as an adjuvant therapy to lung cancer treatment and the mechanisms of TCM effect on lung cancer in vitro and in vivo. We summarized the recent 5 years of different research progress on clinical applications and antitumor mechanisms of TCM in the treatment of lung cancer. As a potent adjuvant therapy, TCM could enhance conventional treatments (chemotherapy, radiation therapy, and epidermal growth factor receptors [EGFRs] tyrosine kinase inhibitors [TKIs]) effects as well as provide synergistic effects, enhance chemotherapy drugs chemosensitivity, reverse drug resistance, reduce adverse reactions and toxicity, relieve patients’ pain and improve quality of life (QOL). After treating with TCM, lung cancer cells will induce apoptosis and/or autophagy, suppress metastasis, impact immune reaction, and therapeutic effect of EGFR-TKIs. Therefore, TCM is a promisingly potent adjuvant therapy in the treatment of lung cancer and its multiple mechanisms are worthy of an in-depth study.
Collapse
|
19
|
Liu C, Liu Q, Yan A, Chang H, Ding Y, Tao J, Qiao C. Metformin revert insulin-induced oxaliplatin resistance by activating mitochondrial apoptosis pathway in human colon cancer HCT116 cells. Cancer Med 2020; 9:3875-3884. [PMID: 32248666 PMCID: PMC7286444 DOI: 10.1002/cam4.3029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/05/2020] [Accepted: 03/14/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Several studies have suggested that drug resistance in colon cancer patients with diabetes may be associated with long-term insulin administration, which in turn decreases the survival rate. Metformin is a commonly used drug to treat diabetes but has been recently demonstrated to have a potential therapeutic effect on colon cancer. This study aimed to elucidate the underlying mechanism by which metformin reverts insulin-induced oxaliplatin resistance in human colon cancer HCT116 cells. METHODS Two colon cancer cell lines (HCT116 and LoVo) were used to verify whether the expression of insulin receptor substrate 1 (IRS-1) could impact the half maximal inhibitory concentration (IC50) of oxaliplatin after chronic insulin treatment. The IC50 of oxaliplatin in both cell lines was measured to identify metformin sensitization to oxaliplatin. The adenosine monophosphate-activated protein kinase (AMPK) inhibitor, namely AMPK small interfering RNA, was used to block AMPK activation to identify critical proteins in the AMPK/Erk signaling pathway. Bcl-2 is a vital antiapoptotic protein involved in the mitochondrial apoptosis pathway. Finally, immunofluorescence and electron microscopy were performed to investigate how metformin affects the ultrastructural integrity of mitochondria. RESULTS The IC50 of oxaliplatin in HCT116 cells was noticeably increased. After the cells were treated with metformin, oxaliplatin resistance was reversed. According to the results of the western blotting assay of vital proteins involved in the classical apoptosis pathway, cleaved caspase-9 was noticeably upregulated, suggesting that the mitochondrial apoptosis pathway was activated. These results were verified by imaging of mitochondria using electron microscopy. The AMPK/Erk signaling pathway experiments revealed that the upregulation of Bcl-2 induced by insulin through Erk phosphorylation was inhibited by metformin and that such inhibition could be mitigated by the inhibition of AMPK. CONCLUSIONS Insulin-induced oxaliplatin resistance was reversed by metformin-mediated AMPK activation. Accordingly, metformin is likely to sensitize patients with diabetes to chemotherapeutic drugs used to treat colon cancer.
Collapse
Affiliation(s)
- Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianqian Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aiwen Yan
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Chang
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuyin Ding
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junye Tao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Qiao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|