1
|
Fan Z, Liu W, Gao Z, Liu Y, Hai H, Lv Z. CMSS1: A RNA binding protein with pivotal roles in non-small cell lung cancer progression and prognosis. BMC Cancer 2025; 25:688. [PMID: 40229784 PMCID: PMC11998257 DOI: 10.1186/s12885-025-14044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND The Cms1 ribosomal small subunit homolog (CMSS1), an RNA-binding protein (RBP), plays a crucial role in tumor development. However, the prognostic and immunological role of CMSS1 in non-small cell lung cancer (NSCLC) remains unclear. METHODS Differentially expressed RBP genes were identified using The Cancer Genome Atlas (TCGA) database, and the hub RBP-related gene, CMSS1, was selected through univariate Cox regression analysis and Kaplan-Meier tests. To evaluate the prognostic capacity of the CMSS1, time-dependent receiver operating characteristic curves, Kaplan-Meier curves and multivariate Cox regression analyses were conducted. The relationship between the CMSS1 gene and tumor-infiltrating immune cells was assessed using the ImmuCellAI algorithm. Additionally, a loss-of-function assay was performed to investigate the functional role of CMSS1 in NSCLC cells. RESULTS Bioinformatic analysis revealed that CMSS1, an RBP-related gene, was notably upregulated in NSCLC tumors, with elevated RNA levels correlating with poor prognosis in NSCLC patients. Immune cell infiltration analysis showed that CMSS1 expression was negatively correlated with CD4 T cells and was positively correlated with macrophages and Tregs. Furthermore, RT-qPCR and western blot confirmed the increased CMSS1 mRNA and CMSS1 protein levels in NSCLC cell lines. Significantly, downregulation of CMSS1 inhibited NSCLC cell viability, migration and invasion. CONCLUSION Our findings suggest that CMSS1 may serve as both a prognostic indicator and a therapeutic target for patients with NSCLC. This study may provide potential guidance for precision therapy and accurate prognosis prediction for patients with NSCLC.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/mortality
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Prognosis
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Disease Progression
- Female
- Male
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Cell Line, Tumor
- Kaplan-Meier Estimate
- Lymphocytes, Tumor-Infiltrating/immunology
Collapse
Affiliation(s)
- Zhe Fan
- Department of Thoracic Surgery 2, the Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116000, China
| | - Wanyu Liu
- Department of Thoracic Surgery 2, the Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116000, China
| | - Zhiwei Gao
- Department of Thoracic Surgery 2, the Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116000, China
| | - Youfa Liu
- Department of Thoracic Surgery 2, the Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116000, China
| | - Hongyang Hai
- Department of General Surgery, People's Hospital of Huangyuan County in Qinghai Province, Xining City, 812100, Qinghai Province, China
| | - Zhenyang Lv
- Department of Thoracic Surgery 2, the Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116000, China.
| |
Collapse
|
2
|
Sun S, Wang J, Zhang Y, Li Y, Guo Y, Huang C, Tartarone A, Pallante P, Li K, Zhang G, Pan X, Li X. Genome-wide profiling of a prognostic RNA-binding protein signature in esophageal cancer. Transl Cancer Res 2025; 14:1428-1446. [PMID: 40104740 PMCID: PMC11912045 DOI: 10.21037/tcr-2024-2561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 03/20/2025]
Abstract
Background RNA-binding proteins (RBPs) are known to be involved in the initiation and development of malignant tumors, but the roles of RBPs in esophageal cancer (EC) remain unclear. This study aims to establish a prognostic signature based on RBPs through genome-wide analysis to predict the prognosis of EC patients and provide new insights into chemoresistance. Methods The gene expression profiles and clinical data of patients with EC were downloaded from the Xena database. Candidate genes were obtained by taking the intersection of RBP genes, Kyoto Encyclopedia of Genes and Genomes pathway-related genes, and differentially expressed RBP genes from cluster analysis. Hub genes were extracted via protein-protein interaction network construction. A Cox proportional hazards regression model with seven prognostic RBPs (TRMT2A, PDHA1, MPRIP, KRI1, IL17A, HSPA1A, and HIST1H4J) was built. The risk score of each patient in internal and external dataset cohorts was calculated, and then the patients were divided into two groups based on the median value. Results There were significant differences in survival curves between the two risk groups in the internal and external dataset cohorts (P<0.05). In terms of chemotherapy, there was a significant association between RBP risk score and response to chemotherapy, with low-risk patients being more likely to achieve complete response. Finally, univariate and multivariate analyses indicated that the risk score was significantly correlated with overall survival (P<0.05), and pathological stage could also be used independently to predict the prognosis of EC. Conclusions Our study indicated that the RBP signature could serve as a prognostic biomarker of EC and provided new insights into the chemoresistance of this disease.
Collapse
Affiliation(s)
- Shaowu Sun
- Department of Thoracic Surgery and Lung Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junya Wang
- Department of Esophageal Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujie Zhang
- Department of Esophageal Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuetong Li
- Undergraduate Program in Clinical Medicine, Henan University School of Medicine, Kaifeng, China
| | - Yanan Guo
- Department of Thoracic Surgery and Lung Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunyao Huang
- Department of Thoracic Surgery and Lung Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Alfredo Tartarone
- Division of Medical Oncology, Department of Onco-Hematology, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Pierlorenzo Pallante
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Naples, Italy
| | - Kaiyuan Li
- Department of Thoracic Surgery and Lung Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guoqing Zhang
- Department of Thoracic Surgery and Lung Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xue Pan
- School of Nursing and Health, Zhengzhou University, Zhengzhou, China
| | - Xiangnan Li
- Department of Thoracic Surgery and Lung Transplantation, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Gu W, Li H, Sun L, Shen Z, Wang Y, Hu X, Wu Y, Liu W, Wan CC, Cai Y, Yan T. The RNA-binding protein CMSS1 promotes the progression of non-small cell lung cancer by regulating the telomerase protein subunit hTERT. Life Sci 2025; 361:123321. [PMID: 39710061 DOI: 10.1016/j.lfs.2024.123321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
AIMS High telomerase activity has been detected in over 85 % of tumors, with the activation of hTERT being the most crucial mechanism for re-establishing telomerase activity. Activation of hTERT maintains telomere length in cells, enabling cancer cells to proliferate indefinitely. Nevertheless, the specific mechanism of telomerase activation in non-small cell lung cancer (NSCLC) remains unclear, and post-transcriptional regulation of hTERT could be a potential activation mechanism. MATERIALS AND METHODS We explored the regulatory impact of CMSS1 on hTERT expression in NSCLC cells using several methods: Yeast three-hybrid system, Reporter gene assay, Western blot, RNA decay assay, and Telomere length measurement. Our analysis revealed significant overexpression of CMSS1 in NSCLC, which correlated with poor prognosis, as determined by bioinformatics and tissue microarray techniques. RNA sequencing analysis showed that CMSS1 knockdown influenced the adhesion capabilities of NSCLC cells. Additionally, potential interacting proteins with CMSS1 were identified through mass spectrometry and co-immunoprecipitation experiments. KEY FINDINGS We discovered that CMSS1 regulates hTERT expression in NSCLC cells by binding to the 5' UTR of hTERT mRNA, impacting its mRNA stability and thereby influencing NSCLC progression. RNA-Seq results and adhesion experiments indicated that CMSS1 knockdown disrupts cell adhesion. hTERT also affects cell adhesion in NSCLC, underscoring CMSS1's role as an upstream regulator of hTERT. Mass spectrometry and Co-IP studies suggest potential interactions between CMSS1, RBM34, and DDX5 that further modulate hTERT expression. SIGNIFICANCE These findings indicate that CMSS1 plays a crucial role in NSCLC progression through its interaction with hTERT, making it a promising therapeutic target.
Collapse
Affiliation(s)
- Wei Gu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China
| | - Hongshui Li
- The Second People Hospital of Dezhou, Dezhou 253022, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ziyi Shen
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yuanhui Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xiaomeng Hu
- Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Yan Wu
- Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Tingdong Yan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
4
|
Caetano BFR, Rocha VL, Rossini BC, Dos Santos LD, Elgui De Oliveira D. Epstein-Barr Virus miR-BARTs 7 and 9 modulate viral cycle, cell proliferation, and proteomic profiles in Burkitt lymphoma. Tumour Virus Res 2024; 17:200276. [PMID: 38159643 PMCID: PMC11000110 DOI: 10.1016/j.tvr.2023.200276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
The Epstein-Barr Virus (EBV) encodes viral microRNAs (miRs) that have been implicated in the pathogenesis of nasopharyngeal and gastric carcinomas, yet their potential roles in lymphomas remain to be fully elucidated. This study evaluated the impact of CRISPR/Cas9-mediated knockdown of EBV miRs BART-7 and BART-9 in EBV-positive Burkitt lymphoma cells Akata. As anticipated, the Akata cells subjected to CRISPR/Cas9-mediated knockdown of either EBV BART-7 or BART-9 exhibited a significant reduction in the expression of these viral miRs compared to cells with wild-type (wt) EBV genomes. This outcome effectively validates the experimental model employed in this study. Knocking down either BART-7 or BART-9 resulted in a notable reduction in cell viability and proliferation rates, alongside an elevation in the expression of EBV lytic genes. Global proteomic analysis revealed that the knockdown of EBV BART-7 significantly decreased the expression of ubiquitin/proteasome proteins while concurrently increasing RNA binding proteins (RBPs). Conversely, BART-9 knockdown reduced proteins associated with oxidoreductase activity, particularly those involved in fatty acid metabolism. Our findings unveil previously undiscovered EBV miRs BARTs 7 and 9 roles in cellular pathways relevant to both viral biology and lymphomagenesis.
Collapse
Affiliation(s)
- Brunno Felipe Ramos Caetano
- São Paulo State University (UNESP), Department of Pathology, Botucatu Medical School, Av. Prof. Dr. Mário Rubens Guimarães Montenegro S/n, CEP 18618-687, Botucatu, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil.
| | - Viviana Loureiro Rocha
- São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Biosciences (IBB). R. Prof. Dr. Antônio Celso Wagner Zanin, 250, CEP 18618-689, Botucatu, São Paulo, Brazil.
| | - Bruno Cesar Rossini
- São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil.
| | - Lucilene Delazari Dos Santos
- São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil.
| | - Deilson Elgui De Oliveira
- São Paulo State University (UNESP), Department of Pathology, Botucatu Medical School, Av. Prof. Dr. Mário Rubens Guimarães Montenegro S/n, CEP 18618-687, Botucatu, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil.
| |
Collapse
|
5
|
Feng H, Zhang X, Kang J. Analyzing the involvement of diverse cell death-related genes in diffuse large B-cell lymphoma using bioinformatics techniques. Heliyon 2024; 10:e30831. [PMID: 38779021 PMCID: PMC11108851 DOI: 10.1016/j.heliyon.2024.e30831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) stands as the most prevalent subtype of non-Hodgkin's lymphoma and exhibits significant heterogeneity. Various forms of programmed cell death (PCD) have been established to have close associations with tumor onset and progression. To this end, this study has compiled 16 PCD-related genes. The investigation delved into genes linked with prognosis, constructing risk models through consecutive application of univariate Cox regression analysis and Lasso-Cox regression analysis. Furthermore, we employed RT-qPCR to validate the mRNA expression levels of certain diagnosis-related genes. Subsequently, the models underwent validation through KM survival curves and ROC curves, respectively. Additionally, nomogram models were formulated employing prognosis-related genes and risk scores. Lastly, disparities in immune cell infiltration abundance and the expression of immune checkpoint-associated genes between high- and low-risk groups, as classified by risk models, were explored. These findings contribute to a more comprehensive understanding of the role played by the 16 PCD-associated genes in DLBCL, shedding light on potential novel therapeutic strategies for the condition.
Collapse
Affiliation(s)
- Heyuan Feng
- Flow Cytometry Room, Beijing Gaobo Boren Hospital, Beijing, China
| | - Xiyuan Zhang
- Department of Blood Transfusion, No.970 Hospital of PLA Joint Logistics Support Force, Shandong, China
| | - Jian Kang
- Flow Cytometry Room, Beijing Gaobo Boren Hospital, Beijing, China
| |
Collapse
|
6
|
Jelicic J, Larsen TS, Andjelic B, Juul-Jensen K, Bukumiric Z. Should we use nomograms for risk predictions in diffuse large B cell lymphoma patients? A systematic review. Crit Rev Oncol Hematol 2024; 196:104293. [PMID: 38346460 DOI: 10.1016/j.critrevonc.2024.104293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Models based on risk stratification are increasingly reported for Diffuse large B cell lymphoma (DLBCL). Due to a rising interest in nomograms for cancer patients, we aimed to review and critically appraise prognostic models based on nomograms in DLBCL patients. A literature search in PubMed/Embase identified 59 articles that proposed prognostic models for DLBCL by combining parameters of interest (e.g., clinical, laboratory, immunohistochemical, and genetic) between January 2000 and 2024. Of them, 40 studies proposed different gene expression signatures and incorporated them into nomogram-based prognostic models. Although most studies assessed discrimination and calibration when developing the model, many lacked external validation. Current nomogram-based models for DLBCL are mainly developed from publicly available databases, lack external validation, and have no applicability in clinical practice. However, they may be helpful in individual patient counseling, although careful considerations should be made regarding model development due to possible limitations when choosing nomograms for prognostication.
Collapse
Affiliation(s)
- Jelena Jelicic
- Department of Hematology, Sygehus Lillebaelt, Vejle, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark.
| | - Thomas Stauffer Larsen
- Department of Hematology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bosko Andjelic
- Department of Haematology, Blackpool Victoria Hospital, Lancashire Haematology Centre, Blackpool, United Kingdom
| | - Karen Juul-Jensen
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Zoran Bukumiric
- Department of Statistics, Faculty of Medicine, University of Belgrade, Serbia
| |
Collapse
|
7
|
Zaccaria GM, Altini N, Mezzolla G, Vegliante MC, Stranieri M, Pappagallo SA, Ciavarella S, Guarini A, Bevilacqua V. SurvIAE: Survival prediction with Interpretable Autoencoders from Diffuse Large B-Cells Lymphoma gene expression data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107966. [PMID: 38091844 DOI: 10.1016/j.cmpb.2023.107966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND In Diffuse Large B-Cell Lymphoma (DLBCL), several methodologies are emerging to derive novel biomarkers to be incorporated in the risk assessment. We realized a pipeline that relies on autoencoders (AE) and Explainable Artificial Intelligence (XAI) to stratify prognosis and derive a gene-based signature. METHODS AE was exploited to learn an unsupervised representation of the gene expression (GE) from three publicly available datasets, each with its own technology. Multi-layer perceptron (MLP) was used to classify prognosis from latent representation. GE data were preprocessed as normalized, scaled, and standardized. Four different AE architectures (Large, Medium, Small and Extra Small) were compared to find the most suitable for GE data. The joint AE-MLP classified patients on six different outcomes: overall survival at 12, 36, 60 months and progression-free survival (PFS) at 12, 36, 60 months. XAI techniques were used to derive a gene-based signature aimed at refining the Revised International Prognostic Index (R-IPI) risk, which was validated in a fourth independent publicly available dataset. We named our tool SurvIAE: Survival prediction with Interpretable AE. RESULTS From the latent space of AEs, we observed that scaled and standardized data reduced the batch effect. SurvIAE models outperformed R-IPI with Matthews Correlation Coefficient up to 0.42 vs. 0.18 for the validation-set (PFS36) and to 0.30 vs. 0.19 for the test-set (PFS60). We selected the SurvIAE-Small-PFS36 as the best model and, from its gene signature, we stratified patients in three risk groups: R-IPI Poor patients with High levels of GAB1, R-IPI Poor patients with Low levels of GAB1 or R-IPI Good/Very Good patients with Low levels of GPR132, and R-IPI Good/Very Good patients with High levels of GPR132. CONCLUSIONS SurvIAE showed the potential to derive a gene signature with translational purpose in DLBCL. The pipeline was made publicly available and can be reused for other pathologies.
Collapse
Affiliation(s)
- Gian Maria Zaccaria
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona, 4, Bari 70126, Italy
| | - Nicola Altini
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona, 4, Bari 70126, Italy.
| | - Giuseppe Mezzolla
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona, 4, Bari 70126, Italy
| | - Maria Carmela Vegliante
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Via O. Flacco, 65, Bari 70124, Italy
| | - Marianna Stranieri
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona, 4, Bari 70126, Italy
| | - Susanna Anita Pappagallo
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Via O. Flacco, 65, Bari 70124, Italy
| | - Sabino Ciavarella
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Via O. Flacco, 65, Bari 70124, Italy
| | - Attilio Guarini
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Via O. Flacco, 65, Bari 70124, Italy
| | - Vitoantonio Bevilacqua
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona, 4, Bari 70126, Italy; Apulian Bioengineering srl, Via delle Violette, 14, Modugno 70026, Italy
| |
Collapse
|
8
|
Chen C, Wang C, Liu W, Chen J, Chen L, Luo X, Wu J. Prognostic value and gene regulatory network of CMSS1 in hepatocellular carcinoma. Cancer Biomark 2024; 39:361-370. [PMID: 38160346 PMCID: PMC11191500 DOI: 10.3233/cbm-230209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Cms1 ribosomal small subunit homolog (CMSS1) is an RNA-binding protein that may play an important role in tumorigenesis and development. OBJECTIVE RNA-seq data from the GEPIA database and the UALCAN database were used to analyze the expression of CMSS1 in liver hepatocellular carcinoma (LIHC) and its relationship with the clinicopathological features of the patients. METHODS LinkedOmics was used to identify genes associated with CMSS1 expression and to identify miRNAs and transcription factors significantly associated with CMSS1 by GSEA. RESULTS The expression level of CMSS1 in hepatocellular carcinoma tissues was significantly higher than that in normal tissues. In addition, the expression level of CMSS1 in advanced tumors was significantly higher than that in early tumors. The expression level of CMSS1 was higher in TP53-mutated tumors than in non-TP53-mutated tumors. CMSS1 expression levels were strongly correlated with disease-free survival (DFS) and overall survival (OS) in patients with LIHC, and high CMSS1 expression predicted poorer OS (P< 0.01) and DFS (P< 0.01). Meanwhile, our results suggested that CMSS1 is associated with the composition of the immune microenvironment of LIHC. CONCLUSIONS The present study suggests that CMSS1 is a potential molecular marker for the diagnosis and prognostic of LIHC.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Caiming Wang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Department of Operation Room, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Wei Liu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Department of Breast, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jiacheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Liang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiangxiang Luo
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
9
|
Zhang L, Yang X, Ge X, Li B, Zhang H, Li J, Liu L, Chen X, Hu W, Sun Y, Xiao S. CMSS1::FLT1 rearrangement leads to ligand-independent activation of FLT1 signaling in acute myeloid leukemia. Am J Hematol 2023; 98:E380-E382. [PMID: 37792599 DOI: 10.1002/ajh.27108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 10/06/2023]
Affiliation(s)
- Liying Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoshan Yang
- Suzhou Sano Precision Medicine Ltd, Suzhou, Jiangsu, China
| | - Xueping Ge
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bingzong Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hong Zhang
- Clinical Laboratory of Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lingfeng Liu
- Suzhou Sano Precision Medicine Ltd, Suzhou, Jiangsu, China
| | - Xiaojun Chen
- Suzhou Sano Precision Medicine Ltd, Suzhou, Jiangsu, China
| | - Wentao Hu
- Suzhou Sano Precision Medicine Ltd, Suzhou, Jiangsu, China
| | - Yu Sun
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Qureshi QUA, Audas TE, Morin RD, Coyle KM. Emerging roles for heterogeneous ribonuclear proteins in normal and malignant B cells. Biochem Cell Biol 2023; 101:160-171. [PMID: 36745874 DOI: 10.1139/bcb-2022-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are among the most abundantly expressed RNA binding proteins in the cell and play major roles in all facets of RNA metabolism. hnRNPs are increasingly appreciated as essential for mammalian B cell development by regulating the carefully ordered expression of specific genes. Due to this tight regulation of the hnRNP-RNA network, it is no surprise that a growing number of genes encoding hnRNPs have been causally associated with the onset or progression of many cancers, including B cell neoplasms. Here we discuss our current understanding of hnRNP-driven regulation in normal, perturbed, and malignant B cells, and the most recent and emerging therapeutic innovations aimed at targeting the hnRNP-RNA network in lymphoma.
Collapse
Affiliation(s)
- Qurat Ul Ain Qureshi
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Timothy E Audas
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Ryan D Morin
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Krysta M Coyle
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
11
|
Li M, Huang F, Xie Z, Hong H, Xu Q, Peng Z. Identification of three small nucleolar RNAs (snoRNAs) as potential prognostic markers in diffuse large B-cell lymphoma. Cancer Med 2023; 12:3812-3829. [PMID: 36812125 PMCID: PMC9939161 DOI: 10.1002/cam4.5115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a non-Hodgkin lymphoma with high mortality rates. Small nucleolar RNAs (snoRNAs) are tumor-specific biological markers, but there are few studies on the role of snoRNAs in DLBCL. MATERIALS AND METHODS Survival-related snoRNAs were selected to construct a specific snoRNA-based signature via computational analyses (Cox regression and independent prognostic analyses) to predict the prognosis of DLBCL patients. To assist in clinical applications, a nomogram was built by combining the risk model and other independent prognostic factors. Pathway analysis, gene ontology analysis, transcription factor enrichment, protein-protein interactions, and single nucleotide variant analysis were used to explore the potential biological mechanisms of co-expressed genes. RESULTS Twelve prognosis-correlated snoRNAs were selected from the DLBCL patient cohort of microarray profiles, and a three-snoRNA signature consisting of SNORD1A, SNORA60, and SNORA66 was constructed. DLBCL patients could be divided into high-risk and low-risk cohorts using the risk model, and the high-risk group and activated B cell-like (ABC) type DLBCL were linked with disappointing survival. In addition, SNORD1A co-expressed genes were inseparably linked to the biological functions of the ribosome and mitochondria. Potential transcriptional regulatory networks have also been identified. MYC and RPL10A were the most mutated SNORD1A co-expressed genes in DLBCL. CONCLUSION Put together, our findings explored the potential biological effects of snoRNAs in DLBCL, and provided a new predictor for DLBCL prediction.
Collapse
Affiliation(s)
- Mei‐wei Li
- Department of Medical OncologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi Zhuang Autonomous RegionP. R. China
| | - Feng‐xiang Huang
- Department of Medical OncologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi Zhuang Autonomous RegionP. R. China
| | - Zu‐cheng Xie
- Department of Medical OncologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi Zhuang Autonomous RegionP. R. China
| | - Hao‐yuan Hong
- Department of Medical OncologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi Zhuang Autonomous RegionP. R. China
| | - Qing‐yuan Xu
- Department of Medical OncologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi Zhuang Autonomous RegionP. R. China
| | - Zhi‐gang Peng
- Department of Medical OncologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningGuangxi Zhuang Autonomous RegionP. R. China
| |
Collapse
|
12
|
Zhou X, He YZ, Liu D, Lin CR, Liang D, Huang R, Wang L. An Autophagy-Related Gene Signature can Better Predict Prognosis and Resistance in Diffuse Large B-Cell Lymphoma. Front Genet 2022; 13:862179. [PMID: 35846146 PMCID: PMC9280409 DOI: 10.3389/fgene.2022.862179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous disease, and about 30%–40% of patients will develop relapsed/refractory DLBCL. In this study, we aimed to develop a gene signature to predict survival outcomes of DLBCL patients based on the autophagy-related genes (ARGs). Methods: We sequentially used the univariate, least absolute shrinkage and selector operation (LASSO), and multivariate Cox regression analyses to build a gene signature. The Kaplan–Meier curve and the area under the receiver operating characteristic curve (AUC) were performed to estimate the prognostic capability of the gene signature. GSEA analysis, ESTIMATE and ssGSEA algorithms, and one-class logistic regression were performed to analyze differences in pathways, immune response, and tumor stemness between the high- and low-risk groups. Results: Both in the training cohort and validation cohorts, high-risk patients had inferior overall survival compared with low-risk patients. The nomogram consisted of the autophagy-related gene signature, and clinical factors had better discrimination of survival outcomes, and it also had a favorable consistency between the predicted and actual survival. GSEA analysis found that patients in the high-risk group were associated with the activation of doxorubicin resistance, NF-κB, cell cycle, and DNA replication pathways. The results of ESTIMATE, ssGSEA, and mRNAsi showed that the high-risk group exhibited lower immune cell infiltration and immune activation responses and had higher similarity to cancer stem cells. Conclusion: We proposed a novel and reliable autophagy-related gene signature that was capable of predicting the survival and resistance of patients with DLBCL and could guide individualized treatment in future.
Collapse
Affiliation(s)
- Xuan Zhou
- Second Clinical Medical College of Southern Medical University, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ying-Zhi He
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Dan Liu
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Chao-Ran Lin
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Dan Liang
- Second Clinical Medical College of Southern Medical University, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Rui Huang
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Rui Huang, ; Liang Wang,
| | - Liang Wang
- Department of Hematology, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- *Correspondence: Rui Huang, ; Liang Wang,
| |
Collapse
|