1
|
Ding J, Zhang K, Wang D, Wang Q. Sevoflurane augments neuroinflammation by regulating DUSP6 via YTHDF1 in postoperative cognitive dysfunction. Toxicol Res (Camb) 2024; 13:tfae100. [PMID: 38966092 PMCID: PMC11221885 DOI: 10.1093/toxres/tfae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Background Postoperative cognitive dysfunction (POCD) is a generally recognized complication experienced by patients who receive anesthesia during surgery. Sevoflurane, the most commonly used inhaled anesthetic, has been shown to trigger neuroinflammation that promotes to POCD. Objective This study examined the pathological mechanism by which sevoflurane causes neuroinflammation, participating in POCD. Methods To establish a neurocyte injury model, the human neuroblastoma cell lines SH-SY5Y and SK-N-SH were treated with sevoflurane. Cell viability was determined using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assays. The reactive oxygen species (ROS) level was evaluated by DCFH-DA assays. A lactate dehydrogenase (LDH) Cytotoxicity Assay Kit was used to measure LDH levels. Inflammatory cytokine levels were measured using enzyme-linked immunosorbent assay assays. Gene expression densities and protein abundance were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) or western blotting. The interaction between YTHDF1 and dual specific phosphatase 6 (DUSP6) was validated using RNA immunoprecipitation (RIP)-qPCR and methylated RIP (MeRIP)-qPCR assays. Flow cytometry was performed to determine apoptosis. Results Sevoflurane promoted apoptosis, oxidative stress, and neuroinflammation and repressed the expression levels of YTHDF1 and DUSP6. Furthermore, YTHDF1 overexpression reversed sevoflurane-induced neuroinflammation in neurocytes. DUSP6 overexpression could alleviate the neuroinflammation induced by sevoflurane via regulating the extracellular signal-regulated kinase (ERK)1/2 signaling pathway. Moreover, YTHDF1 enhanced DUSP6 expression. Conclusion Sevoflurane-stimulated neuroinflammation by regulating DUSP6 via YTHDF1. Sevoflurane promoted neuroinflammation by regulating DUSP6 via YTHDF1 in an in vitro model of POCD.
Collapse
Affiliation(s)
- Jie Ding
- Graduate School, Jiamusi University, Graduate School Department, No. 258, XueFu Street, Xiangyang District, Jiamusi City, 154002, China
| | - Kai Zhang
- Tuberculosis Department One Ward, PLA General Hospital Eighth Medical Center, No. A17, HeishanHu Road, Haidian District, Beijing 100091, China
| | - DongWei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, No. 348 dexiang Street, Xiangyang District, Jiamusi 154002, Heilongjiang Province, China
| | - QingDong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, No. 348 dexiang Street, Xiangyang District, Jiamusi 154002, Heilongjiang Province, China
| |
Collapse
|
2
|
Yan Q, Wong W, Gong L, Yang J, Liang D, Chin KY, Dai S, Wang J. Roles of long non‑coding RNAs in esophageal cell squamous carcinoma (Review). Int J Mol Med 2024; 54:72. [PMID: 38963019 PMCID: PMC11232667 DOI: 10.3892/ijmm.2024.5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and deadly malignancy of the digestive tract. Recent research has identified long non‑coding RNAs (lncRNAs) as crucial regulators in the pathogenesis of ESCC. These lncRNAs, typically exceeding 200 nucleotides, modulate gene expression through various mechanisms, including the competing endogenous RNA (ceRNA) pathway and RNA‑protein interactions. The current study reviews the multifaceted roles of lncRNAs in ESCC, highlighting their involvement in processes such as proliferation, migration, invasion, epithelial‑mesenchymal transition, cell cycle progression, resistance to radiotherapy and chemotherapy, glycolysis, apoptosis, angiogenesis, autophagy, tumor growth, metastasis and the maintenance of cancer stem cells. Specific lncRNAs like HLA complex P5, LINC00963 and non‑coding repressor of NFAT have been shown to enhance resistance to radio‑ and chemotherapy by modulating pathways such as AKT signaling and microRNA interaction, which promote cell survival and proliferation under therapeutic stress. Furthermore, lncRNAs like family with sequence similarity 83, member A antisense RNA 1, zinc finger NFX1‑type containing 1 antisense RNA 1 and taurine upregulated gene 1 are implicated in enhancing invasive and proliferative capabilities of ESCC cells through the ceRNA mechanism, while interactions with RNA‑binding proteins further influence cancer cell behavior. The comprehensive analysis underscores the potential of lncRNAs as biomarkers for prognosis and therapeutic targets in ESCC, suggesting avenues for future research focused on elucidating the detailed molecular mechanisms and clinical applications of lncRNAs in ESCC management.
Collapse
Affiliation(s)
- Qihang Yan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| | - Wingshing Wong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Li Gong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Jie Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Dachuan Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Shuqin Dai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Junye Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
3
|
Zhang L, Wang Y, Gao J, Zhou X, Huang M, Wang X, He Z. Non‑coding RNA: A promising diagnostic biomarker and therapeutic target for esophageal squamous cell carcinoma (Review). Oncol Lett 2024; 27:255. [PMID: 38646493 PMCID: PMC11027111 DOI: 10.3892/ol.2024.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Esophageal cancer (EC) is a common form of malignant tumor in the digestive system that is classified into two types: Esophageal squamous cell carcinomas (ESCC) and esophageal adenocarcinoma. ESCC is known for its early onset of symptoms, which can be difficult to identify, as well as its rapid progression and tendency to develop drug resistance to chemotherapy and radiotherapy. These factors contribute to the high incidence of disease and low cure rate. Therefore, a diagnostic biomarker and therapeutic target need to be identified for ESCC. Non-coding RNAs (ncRNAs) are a class of molecules that are transcribed from DNA but do not encode proteins. Initially, ncRNAs were considered to be non-functional segments generated during transcription. However, with advancements in high-throughput sequencing technologies in recent years, ncRNAs have been associated with poor prognosis, drug resistance and progression of ESCC. The present study provides a comprehensive overview of the biogenesis, characteristics and functions of ncRNAs, particularly focusing on microRNA, long ncRNAs and circular RNAs. Furthermore, the ncRNAs that could potentially be used as diagnostic biomarkers and therapeutic targets for ESCC are summarized to highlight their application value and prospects in ESCC.
Collapse
Affiliation(s)
- Longze Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yanyang Wang
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xue Zhou
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Minglei Huang
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
4
|
Zheng X, Liu W, Zhu Y, Kong W, Su X, Huang L, Cui Y, Sun G. Development and Validation of the Oxidative Stress Related lncRNAs for Prognosis in Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:4399. [PMID: 37686677 PMCID: PMC10487246 DOI: 10.3390/cancers15174399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Esophageal squamous cell cancer (ESCC) is an aggressive disease associated with a poor prognosis. Long non-coding RNAs (lncRNAs) and oxidative stress play crucial roles in tumor progression. We aimed to identify an oxidative stress-related lncRNA signature that could predict the prognosis in ESCC. In the GSE53625 dataset, we identified 332 differentially expressed lncRNAs (DElncRNAs) between ESCC and control samples, out of which 174 were oxidative stress-related DElncRNAs. Subsequently, seven oxidative stress-related DElncRNAs (CCR5AS, LINC01749, PCDH9-AS1, TMEM220-AS1, KCNMA1-AS1, SNHG1, LINC01672) were selected based on univariate and LASSO Cox to build a prognostic risk model, and their expression was detected by RT-qPCR. The model exhibited an excellent ability for the prediction of overall survival (OS) and other clinicopathological traits using Kaplan-Meier (K-M) survival curves, receiver operating characteristic (ROC) curves, and the Wilcoxon test. Additionally, analysis of infiltrated immune cells and immune checkpoints indicated differences in immune status between the two risk groups. Finally, the in vitro experiments showed that PCDH9-AS1 overexpression inhibited proliferation ability and promoted apoptosis and oxidative stress levels in ESCC cells. In conclusion, our study demonstrated that a novel oxidative stress-related DElncRNA prognostic model performed favorably in predicting ESCC patient prognosis and benefits personalized clinical applications.
Collapse
Affiliation(s)
- Xuan Zheng
- School of Public Health, North China University of Science and Technology, Tangshan 063200, China; (X.Z.); (Y.C.)
| | - Wei Liu
- School of Clinical Medicine, North China University of Science and Technology, Tangshan 063200, China; (W.L.); (Y.Z.); (W.K.); (X.S.); (L.H.)
| | - Yingze Zhu
- School of Clinical Medicine, North China University of Science and Technology, Tangshan 063200, China; (W.L.); (Y.Z.); (W.K.); (X.S.); (L.H.)
| | - Wenyue Kong
- School of Clinical Medicine, North China University of Science and Technology, Tangshan 063200, China; (W.L.); (Y.Z.); (W.K.); (X.S.); (L.H.)
| | - Xin Su
- School of Clinical Medicine, North China University of Science and Technology, Tangshan 063200, China; (W.L.); (Y.Z.); (W.K.); (X.S.); (L.H.)
| | - Lanxiang Huang
- School of Clinical Medicine, North China University of Science and Technology, Tangshan 063200, China; (W.L.); (Y.Z.); (W.K.); (X.S.); (L.H.)
| | - Yishuang Cui
- School of Public Health, North China University of Science and Technology, Tangshan 063200, China; (X.Z.); (Y.C.)
| | - Guogui Sun
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan 063000, China
- Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, China
| |
Collapse
|
5
|
Xie Y, Song X, Du D, Ni Z, Huang H. Identification of cuproptosis-related lncRNAs to predict prognosis and immune infiltration characteristics in alimentary tract malignancies. BMC Bioinformatics 2023; 24:184. [PMID: 37142949 PMCID: PMC10161432 DOI: 10.1186/s12859-023-05314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Alimentary tract malignancies (ATM) caused nearly one-third of all tumor-related death. Cuproptosis is a newly identified cell death pattern. The role of cuproptosis-associated lncRNAs in ATM is unknown. METHOD Data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to identify prognostic lncRNAs by Cox regression and LASSO. Then a predictive nomogram was constructed based on seven prognostic lncRNAs. In addition, the prognostic potential of the seven-lncRNA signature was verified via survival analysis, the receiver operating characteristic (ROC) curve, calibration curve, and clinicopathologic characteristics correlation analysis. Furthermore, we explored the associations between the signature risk score and immune landscape, and somatic gene mutation. RESULTS We identified 1211 cuproptosis-related lncRNAs and seven survival-related lncRNAs. Patients were categorized into high-risk and low-risk groups with significantly different prognoses. ROC and calibration curve confirmed the good prediction capability of the risk model and nomogram. Somatic mutations between the two groups were compared. We also found that patients in the two groups responded differently to immune checkpoint inhibitors and immunotherapy. CONCLUSION The proposed novel seven lncRNAs nomogram could predict prognosis and guide treatment of ATM. Further research was required to validate the nomogram.
Collapse
Affiliation(s)
- Yangyang Xie
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China
| | - Xue Song
- Department of Pneumology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China
| | - Danwei Du
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China
| | - Zhongkai Ni
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China
| | - Hai Huang
- Department of General Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, #453, Tiyuchang Road, Xihu District, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
6
|
Pang G, Yi T, Luo H, Jiang L. Preclinical findings: The pharmacological targets and molecular mechanisms of ferulic acid treatment for COVID-19 and osteosarcoma via targeting autophagy. Front Endocrinol (Lausanne) 2022; 13:971687. [PMID: 36204096 PMCID: PMC9530469 DOI: 10.3389/fendo.2022.971687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
The variant virus-based 2019 coronavirus disease (COVID-19) pandemic has reportedly impacted almost all populations globally, characterized by a huge number of infected individuals. Clinical evidence proves that patients with cancer are more easily infected with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) because of immunologic deficiency. Thus, there is an urgent need to develop candidate medications to treat patients with cancer plus COVID-19, including those with osteosarcoma (OS). Ferulic acid, a latent theriacal compound that has anti-tumor and antivirus activities, is discovered to have potential pharmacological use. Thus, in this study, we aimed to screen and determine the potential therapeutic targets of ferulic acid in treating patients with OS plus COVID-19 as well as the pharmacological mechanisms. We applied a well-established integrated methodology, including network pharmacology and molecular docking technique, to detail target prediction, network construction, gene ontology, and pathway enrichment in core targets. The network pharmacology results show that all candidate genes, by targeting autophagy, were the core targets of ferulic acid in treating OS and COVID-19. Through molecular docking analysis, the signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase 1 (MAPK1), and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) were identified as the pharmacological targets of ferulic acid in treating OS. These preclinical findings from bioinformatics analysis altogether effectively determined the pharmacological molecules and mechanisms via targeting autophagy, demonstrating the therapeutic effectiveness of ferulic acid against COVID-19 and OS.
Collapse
Affiliation(s)
- Guangfu Pang
- School of Basic Medical Science, Youjiang Medical College for Nationalities, Baise, China
| | - Tingzhuang Yi
- Department of Oncology, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, China
| | - Hongcheng Luo
- Department of Medical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Lihe Jiang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
- Medical College, Guangxi University, Nanning, China
- Key Laboratory of Tumor Immunology and Pathology (Army Medical University) Ministry of Education, Chongqing, China
| |
Collapse
|
7
|
Yang X, Zeng T, Liu Z, He W, Hu M, Tang T, Chen L, Xing L. Long noncoding RNA GK-IT1 promotes esophageal squamous cell carcinoma by regulating MAPK1 phosphorylation. Cancer Med 2022; 11:4555-4574. [PMID: 35608100 PMCID: PMC9741976 DOI: 10.1002/cam4.4795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/13/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are implicated in the oncogenesis and metastasis of multiple human cancers. Nonetheless, the precise molecular mechanisms underlying the oncogenic role of lncRNA in esophageal squamous cell carcinoma (ESCC) remains to be clarified. METHODS The expression of GK intronic transcript 1 (GK-IT1) was analyzed using ESCC RNA-seq data from The Cancer Genome Atlas database. Quantitative real-time PCR was used to measure the expression of GK-IT1 in ESCC clinical samples and cells. The correlation between GK-IT1 expression and clinicopathological variables was examined using chi-squared tests. Kaplan-Meier survival and Cox regression analyses were employed to generate the survival curve and assess the prognostic value of GK-IT1. Functional experiments were utilized to explore the role of GK-IT1 in promoting cell migration, invasion, proliferation, and suppressing apoptosis and autophagy in ESCC. To understand the mechanism, an RNA pulldown assay, RNA immunoprecipitation, agarose gel electrophoresis, immunofluorescence, and co-immunoprecipitation assays were used. RESULTS In this study we identified an unreported lncRNA, termed GK-IT1 that was aberrantly overexpressed in ESCC tissues and cells. GK-IT1 was closely associated with advanced clinical stage, and it was an independent prognostic indicator of ESCC. Functional assays verified that GK-IT1 significantly promoted ESCC proliferation, invasion, and migration, and suppressed ESCC apoptosis and autophagy. Furthermore, tumorigenesis experiments in nude mice indicated that GK-IT1 promoted ESCC tumor growth and metastasis. Mechanistically, GK-IT1 competitively bound to mitogen-activated protein kinase 1 (MAPK1) to prevent the interaction between dual specificity phosphatase 6 (DUSP6) and MAPK1, thereby controlling the phosphorylation of MAPK1 and promoting ESCC progression. CONCLUSION Our study revealed that GK-IT1 competed with DUSP6 to attenuate the interaction between DUSP6 and MAPK1, leading to activation of the ERK/MAPK pathway, thereby promoting progression of ESCC. Our research indicated that GK-IT1 served as a novel potential target for the diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Xin Yang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Tianyang Zeng
- Department of Thoracic SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ziyang Liu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Wanlun He
- The Frist People's HospitalChongqing Liang Jiang New AreaChongqingChina
| | - Mengting Hu
- Department of Cell Biology and GeneticsChongqing Medical UniversityChongqingChina
| | - Ti Tang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Li Chen
- Department of Thoracic SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lei Xing
- Department of Endocrine and Breast SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|