1
|
Vélez Gómez S, Martínez Garro JM, Ortiz Gómez LD, Salazar Flórez JE, Monroy FP, Peláez Sánchez RG. Bioinformatic Characterization of the Functional and Structural Effect of Single Nucleotide Mutations in Patients with High-Grade Glioma. Biomedicines 2024; 12:2287. [PMID: 39457600 PMCID: PMC11505048 DOI: 10.3390/biomedicines12102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Gliomas are neoplasms of the central nervous system that originate in glial cells. The genetic characteristics of this type of neoplasm are the loss of function of tumor suppressor genes such as TP53 and somatic mutations in genes such as IDH1/2. Additionally, in clinical cases, de novo single nucleotide polymorphisms (SNP) are reported, of which their pathogenicity and their effects on the function and stability of the protein are known. Methodology: Non-synonymous SNPs were analyzed for their structural and functional effect on proteins using a set of bioinformatics tools such as SIFT, PolyPhen-2, PhD-SNP, I-Mutant 3.0, MUpro, and mutation3D. A structural comparison between normal and mutated residues for disease-associated coding SNPs was performed using TM-aling and the SWISS MODEL. Results: A total of 13 SNPs were obtained for the TP53 gene, 1 SNP for IDH1, and 1 for IDH2, which would be functionally detrimental and associated with disease. Additionally, these changes compromise the structure and function of the protein; the A161S SNP for TP53 that has not been reported in any databases was classified as detrimental. Conclusions: All non-synonymous SNPs reported for TP53 were in the region of the deoxyribonucleic acid (DNA) binding domain and had a great impact on the function and stability of the protein. In addition, the two polymorphisms detected in IDH1 and IDH2 genes compromise the structure and activity of the protein. Both genes are related to the development of high-grade gliomas. All the data obtained in this study must be validated through experimental approaches.
Collapse
Affiliation(s)
- Sara Vélez Gómez
- Faculty of Sciences and Biotechnology, CES University, Medellín 050021, Colombia;
| | | | | | - Jorge Emilio Salazar Flórez
- GEINCRO Research Group, Medicine Program, School of Health Sciences, San Martín University Foundation, Sabaneta 055457, Colombia;
| | - Fernando P. Monroy
- Department of Biological Sciences, Northerm Arizona University, Flagstaff, AZ 85721, USA;
| | | |
Collapse
|
2
|
Benitez DA, Cumplido-Laso G, Olivera-Gómez M, Del Valle-Del Pino N, Díaz-Pizarro A, Mulero-Navarro S, Román-García A, Carvajal-Gonzalez JM. p53 Genetics and Biology in Lung Carcinomas: Insights, Implications and Clinical Applications. Biomedicines 2024; 12:1453. [PMID: 39062026 PMCID: PMC11274425 DOI: 10.3390/biomedicines12071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The TP53 gene is renowned as a tumor suppressor, playing a pivotal role in overseeing the cell cycle, apoptosis, and maintaining genomic stability. Dysregulation of p53 often contributes to the initiation and progression of various cancers, including lung cancer (LC) subtypes. The review explores the intricate relationship between p53 and its role in the development and progression of LC. p53, a crucial tumor suppressor protein, exists in various isoforms, and understanding their distinct functions in LC is essential for advancing our knowledge of this deadly disease. This review aims to provide a comprehensive literature overview of p53, its relevance to LC, and potential clinical applications.
Collapse
Affiliation(s)
- Dixan A. Benitez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| | | | | | | | | | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| |
Collapse
|
3
|
Kimbrough EO, Marin-Acevedo JA, Drusbosky LM, Mooradian A, Zhao Y, Manochakian R, Lou Y. Sex- and Age-Associated Differences in Genomic Alterations among Patients with Advanced Non-Small Cell Lung Cancer (NSCLC). Cancers (Basel) 2024; 16:2366. [PMID: 39001428 PMCID: PMC11240325 DOI: 10.3390/cancers16132366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Genomic mutations impact non-small cell lung cancer (NSCLC) biology. The influence of sex and age on the distribution of these alterations is unclear. We analyzed circulating-tumor DNA from individuals with advanced NSCLC from March 2018 to October 2020. EGFR, KRAS, ALK, ROS1, BRAF, NTRK, ERBB2, RET, MET, PIK3CA, STK11, and TP53 alterations were assessed. We evaluated the differences by sex and age (<70 and ≥70) using Fisher's exact test. Of the 34,277 samples, 30,790 (89.83%) had a detectable mutation and 19,923 (58.12%) had an alteration of interest. The median age of the ctDNA positive population was 69 (18-102), 16,756 (54.42%) were female, and 28,835 (93.65%) had adenocarcinoma. Females had more alterations in all the assessed EGFR mutations, KRAS G12C, and ERBB2 ex20 ins. Males had higher numbers of MET amp and alterations in STK11 and TP53. Patients <70 years were more likely to have alterations in EGFR exon 19 del/exon 20 ins/T790M, KRAS G12C/D, ALK, ROS1, BRAF V600E, ERBB2 Ex20ins, MET amp, STK11, and TP53. Individuals ≥70 years were more likely to have alterations in EGFR L861Q, MET exon 14 skipping, and PIK3CA. We provided evidence of sex- and age-associated differences in the distribution of genomic alterations in individuals with advanced NSCLC.
Collapse
Affiliation(s)
- ErinMarie O Kimbrough
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Hematology and Oncology, Division of Internal Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Julian A Marin-Acevedo
- Department of Hematology and Oncology, Division of Internal Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | | | - Ariana Mooradian
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
- Division of Hematology and Medical Oncology, University of Florida, Jacksonville, FL 32209, USA
| | - Yujie Zhao
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rami Manochakian
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
4
|
Hanafi AR, Hanif MA, Pangaribuan MTG, Ariawan WP, Sutandyo N, Kurniawati SA, Setiawan L, Cahyanti D, Rayhani F, Imelda P. Genomic features of lung cancer patients in Indonesia's national cancer center. BMC Pulm Med 2024; 24:43. [PMID: 38245692 PMCID: PMC10799463 DOI: 10.1186/s12890-024-02851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
INTRODUCTION Advances in molecular biology bring advantages to lung cancer management. Moreover, high-throughput molecular tests are currently useful for revealing genetic variations among lung cancer patients. We investigated the genomics profile of the lung cancer patients at the National Cancer Centre of Indonesia. METHODS A retrospective study enrolled 627 tissue biopsy samples using real time polymerase chain reaction (RT-PCR) and 80 circulating tumour DNA (ctDNA) liquid biopsy samples using next-generation sequencing (NGS) from lung cancer patients admitted to the Dharmais Cancer Hospital from January 2018 to December 2022. Data were obtained from medical records. Data statistically analysed with p < 0.05 is considered significant. RESULT The EGFR test results revealed by RT-PCR were wild type (51.5%), single variant (38.8%), double variant (8.3%), and triple variant (1.4%), with 18.66% L85R, 18.22% Ex19del, and 11.08% L861Q variant. Liquid biopsy ctDNA using NGS showed only 2.5% EGFR wild type, 62.5% single variant and 35% co-variant, with EGFR/TP53 and EGFR/PIK3CA as the highest. CONCLUSION EGFR variants are the most found in our centre. Liquid biopsy with ctDNA using NGS examination could detect broad variants and co-variants that will influence the treatment planning.
Collapse
Affiliation(s)
- Arif Riswahyudi Hanafi
- Department of Pulmonology, Dharmais Cancer Hospital, National Cancer Center, Letjen S. Parman Street Kav. 84-86 Slipi Jakarta Barat, DKI Jakarta, West Jakarta, 11420, Indonesia.
| | - Muhammad Alfin Hanif
- Department of Pulmonology, Dharmais Cancer Hospital, National Cancer Center, Letjen S. Parman Street Kav. 84-86 Slipi Jakarta Barat, DKI Jakarta, West Jakarta, 11420, Indonesia
| | - Mariska T G Pangaribuan
- Department of Pulmonology, Dharmais Cancer Hospital, National Cancer Center, Letjen S. Parman Street Kav. 84-86 Slipi Jakarta Barat, DKI Jakarta, West Jakarta, 11420, Indonesia
| | - Wily Pandu Ariawan
- Department of Pulmonology, Dharmais Cancer Hospital, National Cancer Center, Letjen S. Parman Street Kav. 84-86 Slipi Jakarta Barat, DKI Jakarta, West Jakarta, 11420, Indonesia
| | - Noorwati Sutandyo
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| | - Sri Agustini Kurniawati
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| | - Lyana Setiawan
- Department of Clinical Pathology, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| | - Dian Cahyanti
- Department of Anatomical Pathology, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| | - Farilaila Rayhani
- Department of Anatomical Pathology, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| | - Priscillia Imelda
- Cancer Research Team, Dharmais Cancer Hospital, National Cancer Center, West Jakarta, Indonesia
| |
Collapse
|
5
|
Pezzuto F, Hofman V, Bontoux C, Fortarezza F, Lunardi F, Calabrese F, Hofman P. The significance of co-mutations in EGFR-mutated non-small cell lung cancer: Optimizing the efficacy of targeted therapies? Lung Cancer 2023; 181:107249. [PMID: 37244040 DOI: 10.1016/j.lungcan.2023.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most common cause of cancer death worldwide. In non-squamous NSCLC, the identification of oncogenic drivers and the development of target-specific molecules led to remarkable progress in therapeutic strategies and overall survival over the last decade. Nevertheless, responses are limited by systematically acquired mechanisms of resistance early on after starting a targeted therapy. Moreover, mounting evidence has demonstrated that each oncogenic-driven cluster is actually heterogeneous in terms of molecular features, clinical behaviour, and sensitivity to targeted therapy. In this review, we aimed to examine the prognostic and predictive significance of oncogene-driven co-mutations, focusing mainly on EGFR and TP53. A narrative review was performed by searching MEDLINE databases for English articles published over the last decade (from January 2012 until November 2022). The bibliographies of key references were manually reviewed to select those eligible for the topic. The genetic landscape of EGFR-mutated NSCLC is more complicated than what is known so far. In particular, the occurrence of TP53 co-mutations stratify patients carrying EGFR mutations in terms of treatment response. The study provides a deeper understanding of the mechanisms underlying the variability of the genetic landscape of EGFR-mutated NSCLC and summarizes notably the clinical importance of TP53 co-mutations for an open avenue to more properly addressing the clinical decision-making in the near future.
Collapse
Affiliation(s)
- Federica Pezzuto
- University Côte d'Azur, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, BB-0033-00025, Pasteur Hospital, 30 voie romaine, 06001 Nice, France; Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova Medical School, Via A. Gabelli 61, 35121 Padova, Italy.
| | - Véronique Hofman
- University Côte d'Azur, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, BB-0033-00025, Pasteur Hospital, 30 voie romaine, 06001 Nice, France
| | - Christophe Bontoux
- University Côte d'Azur, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, BB-0033-00025, Pasteur Hospital, 30 voie romaine, 06001 Nice, France
| | - Francesco Fortarezza
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova Medical School, Via A. Gabelli 61, 35121 Padova, Italy
| | - Francesca Lunardi
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova Medical School, Via A. Gabelli 61, 35121 Padova, Italy
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova Medical School, Via A. Gabelli 61, 35121 Padova, Italy
| | - Paul Hofman
- University Côte d'Azur, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, BB-0033-00025, Pasteur Hospital, 30 voie romaine, 06001 Nice, France.
| |
Collapse
|