1
|
Araújo CC, Frias J, Mendes F, Martins M, Mota J, Almeida MJ, Ribeiro T, Macedo G, Mascarenhas M. Unlocking the Potential of AI in EUS and ERCP: A Narrative Review for Pancreaticobiliary Disease. Cancers (Basel) 2025; 17:1132. [PMID: 40227709 PMCID: PMC11988021 DOI: 10.3390/cancers17071132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
Artificial Intelligence (AI) is transforming pancreaticobiliary endoscopy by enhancing diagnostic accuracy, procedural efficiency, and clinical outcomes. This narrative review explores AI's applications in endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP), emphasizing its potential to address diagnostic and therapeutic challenges in pancreaticobiliary diseases. In EUS, AI improves pancreatic mass differentiation, malignancy prediction, and landmark recognition, demonstrating high diagnostic accuracy and outperforming traditional guidelines. In ERCP, AI facilitates precise biliary stricture identification, optimizes procedural techniques, and supports decision-making through real-time data integration, improving ampulla recognition and predicting cannulation difficulty. Additionally, predictive analytics help mitigate complications like post-ERCP pancreatitis. The future of AI in pancreaticobiliary endoscopy lies in multimodal data fusion, integrating imaging, genomic, and molecular data to enable personalized medicine. However, challenges such as data quality, external validation, clinician training, and ethical concerns-like data privacy and algorithmic bias-must be addressed to ensure safe implementation. By overcoming these challenges, AI has the potential to redefine pancreaticobiliary healthcare, improving diagnostic accuracy, therapeutic outcomes, and personalized care.
Collapse
Affiliation(s)
- Catarina Cardoso Araújo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Joana Frias
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Joana Mota
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Maria João Almeida
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| |
Collapse
|
2
|
Fang D, Huang Y, Li S, Shi C, Bao J, Du D, Xuan L, Ye L, Zhang Y, Zhu C, Zheng H, Shi Z, Mei Q, Wang H. A semi-supervised convolutional neural network for diagnosis of pancreatic ductal adenocarcinoma based on EUS-FNA cytological images. BMC Cancer 2025; 25:495. [PMID: 40102799 PMCID: PMC11917044 DOI: 10.1186/s12885-025-13910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND The cytological diagnostic process of EUS-FNA smears is time-consuming and manpower-intensive, and the conclusion could be subjective and controversial. Moreover, the relative lack of cytopathologists has limited the widespread implementation of Rapid on-site evaluation (ROSE) presently. Therefore, this study aimed to establish an AI system for the detection of pancreatic ductal adenocarcinoma (PDAC) based on EUS-FNA cytological images. METHODS We collected 3213 unified magnification images of pancreatic cell clusters from 210 pancreatic mass patients who underwent EUS-FNA in four hospitals. A semi-supervised CNN (SSCNN) system was developed to distinguish PDAC from Non-PDAC. The internal and external verifications were adopted and the diagnostic accuracy was compared between different seniorities of cytopathologists. 33 images of "Atypical" diagnosed by expert cytopathologists were selected to analyze the consistency between the system and definitive diagnosis. RESULTS The segmentation indicators Mean Intersection over Union (mIou), precision, recall and F1-score of SSCNN in internal and external testing sets were 88.3%, 93.21%,94.24%, 93.68% and 87.75%, 93.81%, 93.14%, 93.48% successively. The PDAC classification indicators of the SSCNN model including area under the ROC curve (AUC), accuracy, sensitivity, specificity, PPV and NPV in the internal testing set were 0.97%, 0.95%, 0.94%, 0.97%, 0.98%, 0.91% respectively, and 0.99%, 0.94%, 0.94%, 0.95%, 0.99%, 0.75% correspondingly in the external testing set. The diagnostic accuracy of senior, intermediate and junior cytopathologists was 95.00%, 88.33% and 76.67% under the binary diagnostic criteria of PDAC and non-PDAC. In comparison, the accuracy of the SSCNN system was 90.00% in the dataset of man-machine competition. The accuracy of the SSCNN model was highly consistent with senior cytopathologists (Kappa = 0.853, P = 0.001). The accuracy, sensitivity and specificity of the system in the classification of "atypical" cases were 78.79%, 84.20% and 71.43% respectively. CONCLUSION Not merely tremendous preparatory work was drastically reduced, the semi-supervised CNN model could effectively identify PDAC cell clusters in EUS-FNA cytological smears which achieved analogically diagnostic capability compared with senior cytopathologists, and showed outstanding performance in assisting to categorize "atypical" cases where manual diagnosis is controversial. TRIAL REGISTRATION This study was registered on clinicaltrials.gov, and its unique Protocol ID was PJ-2018-12-17.
Collapse
Affiliation(s)
- Dong Fang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
- Department of Gastroenterology, The Second People's Hospital of Hefei, Hefei, 230011, Anhui Province, China
| | - Yigeng Huang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
- University of Science and Technology of China, Hefei, 230026, Anhui Province, China
| | - Suwen Li
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Chen Shi
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Junjun Bao
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Dandan Du
- Department of Cytopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Lanlan Xuan
- Department of Pathology, Anqing Hospital Affiliated to Anhui Medical University, Anqing, 246004, Anhui Province, China
| | - Leping Ye
- Department of Gastroenterology, Anqing Hospital Affiliated to Anhui Medical University, Anqing, 246004, Anhui Province, China
| | - Yanping Zhang
- Department of Gastroenterology, Anqing Hospital Affiliated to Anhui Medical University, Anqing, 246004, Anhui Province, China
| | - ChengLin Zhu
- Department of Biliary and Pancreatic Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Hailun Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui Province, China
| | - Zhenwang Shi
- Department of Gastroenterology, The Second People's Hospital of Hefei, Hefei, 230011, Anhui Province, China
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Huanqin Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China.
- University of Science and Technology of China, Hefei, 230026, Anhui Province, China.
| |
Collapse
|
3
|
Podină N, Gheorghe EC, Constantin A, Cazacu I, Croitoru V, Gheorghe C, Balaban DV, Jinga M, Țieranu CG, Săftoiu A. Artificial Intelligence in Pancreatic Imaging: A Systematic Review. United European Gastroenterol J 2025; 13:55-77. [PMID: 39865461 PMCID: PMC11866320 DOI: 10.1002/ueg2.12723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 01/28/2025] Open
Abstract
The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to late-stage diagnosis and its inaccessible location. Advances in imaging technologies, though improving diagnostic capabilities, still necessitate biopsy confirmation. Artificial intelligence, particularly machine learning and deep learning, has emerged as a revolutionary force in healthcare, enhancing diagnostic precision and personalizing treatment. This narrative review explores Artificial intelligence's role in pancreatic imaging, its technological advancements, clinical applications, and associated challenges. Following the PRISMA-DTA guidelines, a comprehensive search of databases including PubMed, Scopus, and Cochrane Library was conducted, focusing on Artificial intelligence, machine learning, deep learning, and radiomics in pancreatic imaging. Articles involving human subjects, written in English, and published up to March 31, 2024, were included. The review process involved title and abstract screening, followed by full-text review and refinement based on relevance and novelty. Recent Artificial intelligence advancements have shown promise in detecting and diagnosing pancreatic diseases. Deep learning techniques, particularly convolutional neural networks (CNNs), have been effective in detecting and segmenting pancreatic tissues as well as differentiating between benign and malignant lesions. Deep learning algorithms have also been used to predict survival time, recurrence risk, and therapy response in pancreatic cancer patients. Radiomics approaches, extracting quantitative features from imaging modalities such as CT, MRI, and endoscopic ultrasound, have enhanced the accuracy of these deep learning models. Despite the potential of Artificial intelligence in pancreatic imaging, challenges such as legal and ethical considerations, algorithm transparency, and data security remain. This review underscores the transformative potential of Artificial intelligence in enhancing the diagnosis and treatment of pancreatic diseases, ultimately aiming to improve patient outcomes and survival rates.
Collapse
Affiliation(s)
- Nicoleta Podină
- “Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of GastroenterologyPonderas Academic HospitalBucharestRomania
| | | | - Alina Constantin
- Department of GastroenterologyPonderas Academic HospitalBucharestRomania
| | - Irina Cazacu
- Oncology DepartmentFundeni Clinical InstituteBucharestRomania
| | - Vlad Croitoru
- Oncology DepartmentFundeni Clinical InstituteBucharestRomania
| | - Cristian Gheorghe
- “Carol Davila” University of Medicine and PharmacyBucharestRomania
- Center of Gastroenterology and HepatologyFundeni Clinical InstituteBucharestRomania
| | - Daniel Vasile Balaban
- “Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Gastroenterology“Carol Davila” Central Military University Emergency HospitalBucharestRomania
| | - Mariana Jinga
- “Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Gastroenterology“Carol Davila” Central Military University Emergency HospitalBucharestRomania
| | - Cristian George Țieranu
- “Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Gastroenterology and HepatologyElias Emergency University HospitalBucharestRomania
| | - Adrian Săftoiu
- “Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of GastroenterologyPonderas Academic HospitalBucharestRomania
- Department of Gastroenterology and HepatologyElias Emergency University HospitalBucharestRomania
| |
Collapse
|
4
|
Wu Y, Ramai D, Smith ER, Mega PF, Qatomah A, Spadaccini M, Maida M, Papaefthymiou A. Applications of Artificial Intelligence in Gastrointestinal Endoscopic Ultrasound: Current Developments, Limitations and Future Directions. Cancers (Basel) 2024; 16:4196. [PMID: 39766095 PMCID: PMC11674484 DOI: 10.3390/cancers16244196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/09/2025] Open
Abstract
Endoscopic ultrasound (EUS) effectively diagnoses malignant and pre-malignant gastrointestinal lesions. In the past few years, artificial intelligence (AI) has shown promising results in enhancing EUS sensitivity and accuracy, particularly for subepithelial lesions (SELs) like gastrointestinal stromal tumors (GISTs). Furthermore, AI models have shown high accuracy in predicting malignancy in gastric GISTs and distinguishing between benign and malignant intraductal papillary mucinous neoplasms (IPMNs). The utility of AI has also been applied to existing and emerging technologies involved in the performance and evaluation of EUS-guided biopsies. These advancements may improve training in EUS, allowing trainees to focus on technical skills and image interpretation. This review evaluates the current state of AI in EUS, covering imaging diagnosis, EUS-guided biopsies, and training advancements. It discusses early feasibility studies and recent developments, while also addressing the limitations and challenges. This article aims to review AI applications to EUS and its applications in clinical practice while addressing pitfalls and challenges.
Collapse
Affiliation(s)
- Yizhong Wu
- Department of Internal Medicine, Baylor Scott & White Round Rock Hospital, Round Rock, TX 78665, USA;
| | - Daryl Ramai
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Eric R. Smith
- Department of Internal Medicine, Baylor Scott & White Round Rock Hospital, Round Rock, TX 78665, USA;
| | - Paulo F. Mega
- Gastrointestinal Endoscopy Unit, Universidade de Sao Paulo Hospital das Clinicas, São Paulo 05403-010, Brazil
| | - Abdulrahman Qatomah
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Marco Spadaccini
- Department of Endoscopy, Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Marcello Maida
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Enna ‘Kore’, 94100 Enna, Italy;
| | | |
Collapse
|
5
|
Vaickus LJ, Kerr DA, Velez Torres JM, Levy J. Artificial Intelligence Applications in Cytopathology: Current State of the Art. Surg Pathol Clin 2024; 17:521-531. [PMID: 39129146 DOI: 10.1016/j.path.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The practice of cytopathology has been significantly refined in recent years, largely through the creation of consensus rule sets for the diagnosis of particular specimens (Bethesda, Milan, Paris, and so forth). In general, these diagnostic systems have focused on reducing intraobserver variance, removing nebulous/redundant categories, reducing the use of "atypical" diagnoses, and promoting the use of quantitative scoring systems while providing a uniform language to communicate these results. Computational pathology is a natural offshoot of this process in that it promises 100% reproducible diagnoses rendered by quantitative processes that are free from many of the biases of human practitioners.
Collapse
Affiliation(s)
- Louis J Vaickus
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, Hanover, NH 03750, USA.
| | - Darcy A Kerr
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, Hanover, NH 03750, USA. https://twitter.com/darcykerrMD
| | - Jaylou M Velez Torres
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua Levy
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA; Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| |
Collapse
|
6
|
Jiang H, Ye LS, Yuan XL, Luo Q, Zhou NY, Hu B. Artificial intelligence in pancreaticobiliary endoscopy: Current applications and future directions. J Dig Dis 2024; 25:564-572. [PMID: 39740251 DOI: 10.1111/1751-2980.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
Pancreaticobiliary endoscopy is an essential tool for diagnosing and treating pancreaticobiliary diseases. However, it does not fully meet clinical needs, which presents challenges such as significant difficulty in operation and risks of missed diagnosis or misdiagnosis. In recent years, artificial intelligence (AI) has enhanced the diagnostic and treatment efficiency and quality of pancreaticobiliary endoscopy. Diagnosis and differential diagnosis based on endoscopic ultrasound (EUS) images, pathology of EUS-guided fine-needle aspiration or biopsy, need for endoscopic retrograde cholangiopancreatography (ERCP) and assessment of operational difficulty, postoperative complications and prediction of patient prognosis, and real-time procedure guidance. This review provides an overview of AI applications in pancreaticobiliary endoscopy and proposes future development directions in aspects such as data quality and algorithmic interpretability, aiming to provide new insights for the integration of AI technology with pancreaticobiliary endoscopy.
Collapse
Affiliation(s)
- Huan Jiang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lian Song Ye
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiang Lei Yuan
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qi Luo
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Nuo Ya Zhou
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Med-X Center for Materials, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
7
|
Norose T, Ohike N, Nakaya D, Kamiya K, Sugiura Y, Takatsuki M, Koizumi H, Okawa C, Ohya A, Sasaki M, Aoki R, Nakahara K, Kobayashi S, Tateishi K, Koike J. Investigation of the usefulness of a bile duct biopsy and bile cytology using a hyperspectral camera and machine learning. Pathol Int 2024; 74:337-345. [PMID: 38787324 DOI: 10.1111/pin.13438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/15/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
To improve the efficiency of pathological diagnoses, the development of automatic pathological diagnostic systems using artificial intelligence (AI) is progressing; however, problems include the low interpretability of AI technology and the need for large amounts of data. We herein report the usefulness of a general-purpose method that combines a hyperspectral camera with machine learning. As a result of analyzing bile duct biopsy and bile cytology specimens, which are especially difficult to determine as benign or malignant, using multiple machine learning models, both were able to identify benign or malignant cells with an accuracy rate of more than 80% (93.3% for bile duct biopsy specimens and 83.2% for bile cytology specimens). This method has the potential to contribute to the diagnosis and treatment of bile duct cancer and is expected to be widely applied and utilized in general pathological diagnoses.
Collapse
Affiliation(s)
- Tomoko Norose
- Division of Molecular Pathology, Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Nobuyuki Ohike
- Division of Molecular Pathology, Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | - Yoshiya Sugiura
- Division of Molecular Pathology, Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Misato Takatsuki
- Division of Molecular Pathology, Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hirotaka Koizumi
- Division of Molecular Pathology, Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Chie Okawa
- Division of Pathology, St. Marianna University Hospital, Kawasaki, Japan
| | - Aya Ohya
- Division of Pathology, St. Marianna University Hospital, Kawasaki, Japan
| | - Miyu Sasaki
- Division of Pathology, St. Marianna University Hospital, Kawasaki, Japan
| | - Ruka Aoki
- Division of Pathology, St. Marianna University Hospital, Kawasaki, Japan
| | - Kazunari Nakahara
- Department of Gastroenterology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Shinjiro Kobayashi
- Department of Gastroenterological and General Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Junki Koike
- Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
8
|
da Mota Santana LA, Gonçalo RIC, Floresta LG, de Oliveira EM, Trindade LMDF, Borges LP, Ribeiro DA, Martins-Filho PR, Takeshita WM. Integrating ChatGPT in oral cytopathology: Enhancing fine needle aspiration diagnostic accuracy for malignant lesions. Oral Oncol 2024; 150:106685. [PMID: 38309197 DOI: 10.1016/j.oraloncology.2024.106685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 02/05/2024]
Affiliation(s)
| | - Rani Iani Costa Gonçalo
- Department of Dentistry, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Lara Góis Floresta
- Department of Dentistry, Tiradentes University (UNIT), Aracaju, SE, Brazil
| | - Eduardo Morato de Oliveira
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | | | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of Sao Paulo (UNIFESP), Santos, SP, Brazil
| | | | - Wilton Mitsunari Takeshita
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| |
Collapse
|
9
|
Qin X, Ran T, Chen Y, Zhang Y, Wang D, Zhou C, Zou D. Artificial Intelligence in Endoscopic Ultrasonography-Guided Fine-Needle Aspiration/Biopsy (EUS-FNA/B) for Solid Pancreatic Lesions: Opportunities and Challenges. Diagnostics (Basel) 2023; 13:3054. [PMID: 37835797 PMCID: PMC10572518 DOI: 10.3390/diagnostics13193054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
Solid pancreatic lesions (SPLs) encompass a variety of benign and malignant diseases and accurate diagnosis is crucial for guiding appropriate treatment decisions. Endoscopic ultrasonography-guided fine-needle aspiration/biopsy (EUS-FNA/B) serves as a front-line diagnostic tool for pancreatic mass lesions and is widely used in clinical practice. Artificial intelligence (AI) is a mathematical technique that automates the learning and recognition of data patterns. Its strong self-learning ability and unbiased nature have led to its gradual adoption in the medical field. In this paper, we describe the fundamentals of AI and provide a summary of reports on AI in EUS-FNA/B to help endoscopists understand and realize its potential in improving pathological diagnosis and guiding targeted EUS-FNA/B. However, AI models have limitations and shortages that need to be addressed before clinical use. Furthermore, as most AI studies are retrospective, large-scale prospective clinical trials are necessary to evaluate their clinical usefulness accurately. Although AI in EUS-FNA/B is still in its infancy, the constant input of clinical data and the advancements in computer technology are expected to make computer-aided diagnosis and treatment more feasible.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunhua Zhou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (X.Q.); (T.R.); (Y.C.); (Y.Z.); (D.W.)
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (X.Q.); (T.R.); (Y.C.); (Y.Z.); (D.W.)
| |
Collapse
|