1
|
Yan L, He Q, Verma SP, Zhang X, Giel AS, Maj C, Graz K, Naderi E, Chen J, Ali MW, Gharahkhani P, Shu X, Offit K, Shah PM, Gerdes H, Molena D, Srivastava A, MacGregor S, Palles C, Thieme R, Vieth M, Gockel I, Vaughan TL, Schumacher J, Buas MF. Biologically targeted discovery-replication scan identifies G×G interaction in relation to risk of Barrett's esophagus and esophageal adenocarcinoma. HGG ADVANCES 2025; 6:100399. [PMID: 39755942 PMCID: PMC11815673 DOI: 10.1016/j.xhgg.2025.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (1) known/plausible links to BE/EAC pathogenesis (n = 493) or (2) prior evidence of biological interactions (n = 4,196). Approximately 75 × 106 SNP×SNP interactions were screened via hierarchical group lasso (glinternet) using BEACON GWAS data. The top ∼2,000 interactions retained in each scan were prioritized using p values from single logistic models. Identical scans were repeated among males only (78%), with two independent GWAS datasets used for replication. In overall and male-specific primary replications, 11 of 187 and 20 of 191 interactions satisfied p < 0.05, respectively. The strongest evidence for secondary replication was for rs17744726×rs3217992 among males, with consistent directionality across all cohorts (Pmeta = 2.19 × 10-8); rs3217992 "T" was associated with reduced risk only in individuals homozygous for rs17744726 "G." Rs3217992 maps to the CDKN2B 3' UTR and reportedly disrupts microRNA-mediated repression. Rs17744726 maps to an intronic enhancer region in BLK. Through in silico prioritization and experimental validation, we identified a nearby proxy variant (rs4841556) as a functional modulator of enhancer activity. Enhancer-gene mapping and eQTLs implicated BLK and FAM167A as targets. The first systematic G×G investigation in BE/EAC, this study uncovers differential risk associations for CDKN2B variation by BLK genotype, suggesting novel biological dependency between two risk loci encoding key mediators of tumor suppression and inflammation.
Collapse
Affiliation(s)
- Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Qianchuan He
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shiv P Verma
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xu Zhang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ann-Sophie Giel
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Carlo Maj
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Kathryn Graz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elnaz Naderi
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jianhong Chen
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mourad Wagdy Ali
- Department of Genome Sciences, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Puya Gharahkhani
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Xiang Shu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth Offit
- Clinical Genetics, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pari M Shah
- Gastroenterology and Nutrition Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hans Gerdes
- Gastroenterology and Nutrition Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniela Molena
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amitabh Srivastava
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Claire Palles
- Department of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-Universiät Erlangen-Nürnberg, Klinikum Bayreuth, Bayreuth, Germany
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Thomas L Vaughan
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, School of Public Health, Seattle, WA, USA
| | | | - Matthew F Buas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Sui X, Feng P, Guo J, Chen X, Chen R, Zhang Y, He F, Deng F. Novel targets and their functions in the prognosis of uterine corpus endometrial cancer patients. J Appl Genet 2024; 65:757-772. [PMID: 38639843 DOI: 10.1007/s13353-024-00856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024]
Abstract
Aberrant mRNA expression is implicated in uterine corpus endometrial carcinoma (UCEC) oncogenesis and progression. However, effective prognostic biomarkers for UCEC remain limited. We aimed to construct a reliable multi-gene risk model using gene expression profiles. Utilizing TCGA data (543 UCEC samples, 35 controls), we identified 1517 differentially acting genes. Weighted gene co-expression complex analysis (WGCCA), hub gene screening, and risk regression analysis (RRA) were employed to determine prognosis-related genes and construct the risk model. Nomograms visualized risk scores and receiver operator characteristic (ROC) curves assessed model performance. Seven novel prognosis-related hub genes (ANGPT1, ASB2, GAL, GDF7, ONECUT2, SV2B, TRPC6) were identified. The model's concordance index (C index) by multivariate Cox regression analysis was 0.79. ROC curves yielded AUCs of 0.811 (3-year) and 0.79 (5-year), demonstrating the model's efficacy in predicting UCEC survival. Our study proposes a promising seven-biomarker risk model for predicting UCEC prognosis, offering potential clinical utility.
Collapse
Affiliation(s)
- Xin Sui
- Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Penghui Feng
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jie Guo
- Harbin Medical University Daqing Campus, No. 39 Xinyang RoadHeilongjiang Province, Daqing City, China
| | - Xingtong Chen
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, 100730, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Yanmin Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Falin He
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, 100730, China.
| | - Feng Deng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
3
|
Identification and Validation of a Necroptosis-Related Prognostic Signature for Kidney Renal Clear Cell Carcinoma. Stem Cells Int 2023; 2023:8446765. [PMID: 36910333 PMCID: PMC10005877 DOI: 10.1155/2023/8446765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 03/06/2023] Open
Abstract
Background Necroptosis is progressively becoming an important focus of research because of its role in the pathogenesis of cancer and other inflammatory diseases. Our study is designed to anticipate the survival time of kidney renal clear cell carcinoma (KIRC) by constructing a prognostic signature of necroptosis-related genes. Materials Clinical information and RNA-seq data were acquired from Renal Cell Cancer-European Union (RECA-EU) and The Cancer Genome Atlas- (TCGA-) KIRC, respectively. ConsensusClusterPlus was used to identify molecular subtypes, and the distribution of immune cell infiltration, anticancer drug sensitivity, and somatic gene mutations was studied in these subtypes. Subsequently, LASSO-Cox regression and univariate Cox regression were also carried out to construct a necroptosis-related signature. Cox regression, survival analysis, clinicopathological characteristic correlation analysis, nomogram, cancer stem cell analysis, and receiver operating characteristic (ROC) curve were some tools employed to study the prognostic power of the signature. Results Based on the expression patterns of 66 survival-related necroptosis genes, we classified the KIRC into three subtypes (C1, C2, and C3) that are associated with necroptosis, which had significantly different tumor stem cell components. Among these, C2 patients had a longer survival time and enhanced immune status and were more sensitive to conventional chemotherapeutic drugs. Moreover, in order to predict the prognosis of KIRC patients, five genes (BMP8A, TLCD1, CLGN, GDF7, and RARB) were used to develop a necroptosis-related prognostic signature, which had an acceptable predictive potency. The results from Cox regression and stratified survival analysis revealed that the signature was an independent prognostic factor, whereas the nomogram and calibration curve demonstrated satisfactory survival time prediction based on the risk score. Conclusions Three molecular subtypes and five necroptosis-related genes were discovered in KIRC using data from TCGA-KIRC and RECA-EU. Thus, a new biomarker and a potentially effective therapeutic approach for KIRC patients were provided in the current study.
Collapse
|
4
|
Ahmed WUR, Patel MIA, Ng M, McVeigh J, Zondervan K, Wiberg A, Furniss D. Shared genetic architecture of hernias: A genome-wide association study with multivariable meta-analysis of multiple hernia phenotypes. PLoS One 2022; 17:e0272261. [PMID: 36584111 PMCID: PMC9803250 DOI: 10.1371/journal.pone.0272261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/14/2022] [Indexed: 12/31/2022] Open
Abstract
Abdominal hernias are common and characterised by the abnormal protrusion of a viscus through the wall of the abdominal cavity. The global incidence is 18.5 million annually and there are limited non-surgical treatments. To improve understanding of common hernia aetiopathology, we performed a six-stage genome-wide association study (GWAS) of 62,637 UK Biobank participants with either single or multiple hernia phenotypes including inguinal, femoral, umbilical and hiatus hernia. Additionally, we performed multivariable meta-analysis with metaUSAT, to allow integration of summary data across traits to generate combined effect estimates. On individual hernia analysis, we identified 3404 variants across 38 genome-wide significant (p < 5×10-8) loci of which 11 are previously unreported. Robust evidence for five shared susceptibility loci was discovered: ZC3H11B, EFEMP1, MHC region, WT1 and CALD1. Combined hernia phenotype analyses with additional multivariable meta-analysis of summary statistics in metaUSAT revealed 28 independent (seven previously unreported) shared susceptibility loci. These clustered in functional categories related to connective tissue and elastic fibre homeostasis. Weighted genetic risk scores also correlated with disease severity suggesting a phenotypic-genotypic severity correlation, an important finding to inform future personalised therapeutic approaches to hernia.
Collapse
Affiliation(s)
- Waheed Ul-Rahman Ahmed
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Manal I. A. Patel
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Michael Ng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - James McVeigh
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Krina Zondervan
- Nuffield Department of Women’s & Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Akira Wiberg
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Dominic Furniss
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Lamare FA, Khongsti S, Marthong L, Ghosh S, Chenkual S, Dkhar H, Maitra A, Ghosh S. Genome-wide DNA methylation profiling of stomach cancer in the ethnic population of Mizoram, North East India. Genomics 2022; 114:110478. [PMID: 36064073 DOI: 10.1016/j.ygeno.2022.110478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022]
Abstract
Stomach cancer is the fifth most common cancer in terms of prevalence and incidence and the fourth leading cause of mortality in men and women worldwide. It is well-established that aberrant DNA methylation in cells can lead to carcinogenesis. The primary objective of our study was to investigate the aberrant DNA methylation status of genes associated with stomach cancer with a particular reference to the ethnic population of Mizoram, North East India. The site-level analysis identified 2883 CpG sites differentially methylated, representing ~922 genes. Out of which 476 Differentially Methylated Positions (DMPs) were promoter-associated, 452 DMPs were hypermethylated, and 24 were hypomethylated. The region-level analysis identified 462 Differentially Methylated Regions (DMRs) corresponding to ~320 genes, of which ~281 genes were hypermethylated and ~ 40 genes were hypomethylated. TCGA analysis showed that some of the genes had been previously implicated in other cancers including stomach cancer. Five hypermethylated genes were selected as candidate genes for further investigations and they have shown to be novel and could serve as candidate hypermethylation biomarkers for stomach cancer in this particular ethnic group.
Collapse
Affiliation(s)
- F A Lamare
- Department of Zoology, North-Eastern Hill University (NEHU), Shillong, India
| | - S Khongsti
- Department of Zoology, North-Eastern Hill University (NEHU), Shillong, India
| | - L Marthong
- Department of Zoology, North-Eastern Hill University (NEHU), Shillong, India
| | - S Ghosh
- National Institute of Biomedical Genomics (NIBMG), Kalyani, West Bengal, India
| | | | - H Dkhar
- Nazareth Hospital, Shillong, India
| | - A Maitra
- National Institute of Biomedical Genomics (NIBMG), Kalyani, West Bengal, India
| | - S Ghosh
- Department of Zoology, North-Eastern Hill University (NEHU), Shillong, India.
| |
Collapse
|
6
|
BMP2 as a promising anticancer approach: functions and molecular mechanisms. Invest New Drugs 2022; 40:1322-1332. [PMID: 36040572 DOI: 10.1007/s10637-022-01298-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
Bone morphogenetic protein 2 (BMP2), a pluripotent factor, is a member of the transforming growth factor-beta (TGF-β) superfamily and is implicated in embryonic development and postnatal homeostasis in tissues and organs. Experimental research in the contexts of physiology and pathology has indicated that BMP2 can induce macrophages to differentiate into osteoclasts and accelerate the osteolytic mechanism, aggravating cancer cell bone metastasis. Emerging studies have stressed the potent regulatory effect of BMP2 in cancer cell differentiation, proliferation, survival, and apoptosis. Complicated signaling networks involving multiple regulatory proteins imply the significant biological functions of BMP2 in cancer. In this review, we comprehensively summarized and discussed the current evidence related to the modulation of BMP2 in tumorigenesis and development, including evidence related to the roles and molecular mechanisms of BMP2 in regulating cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer angiogenesis and the tumor microenvironment (TME). All these findings suggest that BMP2 may be an effective therapeutic target for cancer and a new marker for assessing treatment efficacy.
Collapse
|
7
|
Jin Q, Jiang X, Du X, Hu W, Bai S, Wang X, Xu B, Zhao W. Integrated Transcriptome and Multiple Activated Pathways in Endometrial Cancer. Front Genet 2021; 12:680331. [PMID: 34925436 PMCID: PMC8678463 DOI: 10.3389/fgene.2021.680331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 10/07/2021] [Indexed: 12/05/2022] Open
Abstract
Because the incidence of endometrial cancer is notably increasing worldwide, it has become the leading gynecologic cancer in the United States. Standard treatment results in the loss of reproductive function in women of childbearing age. Furthermore, advanced cancer stages are associated with poor overall survival. The aim of this study was to explore the abnormal expression profile of genes during the development of endometrial cancer, which is essential to provide a better understanding of the mechanisms involved. Five pairs of endometrial cancer tissues and normal endometrial tissues were subjected to next-generation transcriptome sequencing technology. Quantitative real-time PCR (RT-qPCR) was performed to validate the expression profile of key differentially expressed genes (2.0-fold change, adj. p < 0.05) (DEGs) identified in the RNA-seq result. GO and KEGG pathways were used for bioinformatic analyses. The transcriptomic sequencing results showed 1153 DEGs, including 673 upregulated and 480 downregulated genes, in the EC specimens. Decreased expression of ID1, IGF1, GDF7, SMAD9, TGF-beta and WNT4, as well as GDF5, INHBA and ERBB4 overexpression, were confirmed in EC using RT-qPCR. Additionally, EC tissue exhibited marked enrichment in genes promoting cellular adhesion, proliferation, migration and plasma membrane. KEGG analysis revealed changes in various pathways, such as the TGF-beta, PI3K-Akt, Wnt, and estrogen pathways. Our data describe the molecular events involved in the pathogenesis of EC, which may be potential diagnostic markers and targets of therapeutic interventions.
Collapse
Affiliation(s)
- Qi Jin
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Division of Life Sciences and Medicine, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Xiaohua Jiang
- Division of Life Sciences and Medicine, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Xin Du
- Reproductive Medicine Center, 901th Hospital of PLA Joint Logistic Support Force, Hefei, China
| | - Weiping Hu
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Shun Bai
- Division of Life Sciences and Medicine, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Xian Wang
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Xu
- Division of Life Sciences and Medicine, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- *Correspondence: Bo Xu, ; Weidong Zhao,
| | - Weidong Zhao
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- *Correspondence: Bo Xu, ; Weidong Zhao,
| |
Collapse
|
8
|
Cheng L, Han T, Chen B, Nie K, Peng W. TBX5-AS1, an enhancer RNA, is a potential novel prognostic biomarker for lung adenocarcinoma. BMC Cancer 2021; 21:794. [PMID: 34238250 PMCID: PMC8268367 DOI: 10.1186/s12885-021-08517-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Enhancer RNAs (eRNAs) are demonstrated to be closely associated with tumourigenesis and cancer progression. However, the role of eRNAs in lung adenocarcinoma (LUAD) remains largely unclear. Thus, a comprehensive analysis was constructed to identify the key eRNAs, and to explore the clinical utility of the identified eRNAs in LUAD. METHODS First, LUAD expression profile data from the Cancer Genome Atlas (TCGA) dataset and eRNA-relevant information were integrated for Kaplan-Meier survival analysis and Spearman's correlation analysis to filtered the key candidate eRNAs that was associated with survival rate and their target genes in LUAD. Then, the key eRNA was selected for subsequent clinical correlation analysis. KEGG pathway enrichment analyses were undertaken to explore the potential signaling pathways of the key eRNA. Data from the human protein atlas (HPA) database were used to validate the outcomes and the quantitative real time-polymerase chain reaction (qRT-PCR) analysis was conducted to measure eRNA expression levels in tumor tissues and paired normal adjacent tissues from LUAD patients. Finally, the eRNAs were validated in pan-cancer. RESULTS As a result, TBX5-AS1 was identified as the key eRNA, which has T-box transcription factor 5 (TBX5) as its regulatory target. KEGG analysis indicated that TBX5-AS1 may exert a vital role via the PI3K/AKT pathway, Ras signaling pathway, etc. Additionally, the qRT-PCR results and the HPA database indicated that TBX5-AS1 and TBX5 were significantly downregulated in tumour samples compared to matched-adjacent pairs. The pan-cancer validation results showed that TBX5-AS1 was associated with survival in four tumors, namely, adrenocortical carcinoma (ACC), LUAD, lung squamous cell carcinoma (LUSC), and uterine corpus endometrial carcinoma (UCEC). Correlations were found between TBX5-AS1 and its target gene, TBX5, in 26 tumor types. CONCLUSION Collectively, our results indicated that TBX5-AS1 may be a potential prognostic biomarker for LUAD patients and promote the targeted therapy of LUAD.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011 People’s Republic of China
| | - Tong Han
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Bolin Chen
- Department of Thoracic Medical Oncology, Hunan Cancer Hospital/the affiliated Cancer Hospital of Xiangya school of Medicine, Central South University, Changsha, 410013 Hunan China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011 People’s Republic of China
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405 Guangdong China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011 People’s Republic of China
| |
Collapse
|
9
|
Huang W, Li P, Qiu X. [A Literature Review on the Role of TBX5 in Expression and Progression of Lung Cancer: Current Perspectives]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:883-888. [PMID: 32810974 PMCID: PMC7583881 DOI: 10.3779/j.issn.1009-3419.2020.102.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
T-box转录因子(T-box transcription factor gene, TBX)基因涉及器官的发生,TBX5在人的正常心脏和肺组织中表达水平最高。TBX5的缺乏可能导致胸廓发育畸形和膈肌发育异常,其异位表达和过表达会诱导细胞凋亡和抑制细胞生长。既往研究发现了TBX5在食管腺癌、胃癌、结肠癌和乳腺癌的发生和发展中的潜在作用。我们对TBX2亚家族的基因表达和预后之间的关系进行了综述,同时探究TBX5在调控肺癌发生发展机制中的研究进展。虽然TBX5和肺癌发生之间的关系尚不明确,不过TBX5可以显著抑制人体内肿瘤生长,其表达水平和肺癌的进展呈现负相关。由此,TBX5的基因表达水平和甲基化程度是潜在的表证肺癌增殖和转移的生物标志物,具有作为肺癌治疗靶点的潜力。
Collapse
Affiliation(s)
- Weijia Huang
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Peiwei Li
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoming Qiu
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Identification of an Individualized Prognostic Signature Based on the RWSR Model in Early-Stage Bladder Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9186546. [PMID: 32596394 PMCID: PMC7293744 DOI: 10.1155/2020/9186546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Bladder cancer (BLCA) is the fourth common cancer among males in the United States, which is also the fourth leading cause of cancer-related death in old males. BLCA has a high recurrence rate, with over 50% of patients which has at least one recurrence within five years. Due to the complexity of the molecular mechanisms and heterogeneous cancer feature, BLCA clinicians find it hard to make an efficient management decision as they lack reliable assessment of mortality risk. Meanwhile, there is currently no screening suitable prognostic signature or method recommended for early detection, which is significantly important to early-stage detection and prognosis. In this study, a novel model, named the risk-weighted sparse regression (RWSR) model, is constructed to identify a robust signature for patients of early-stage BLCA. The 17-gene signature is generated and then validated as an independent prognostic factor in BLCA cohorts from GSE13507 and TCGA_BLCA datasets. Meanwhile, a risk score model is developed and validated among the 17-gene signature. The risk score is also considered an independent factor for prognosis prediction, which is confirmed through prognosis analysis. The Kaplan-Meier with the log-rank test is used to assess survival difference. Furthermore, the predictive capacity of the signature is proved through stratification analysis. Finally, an effective patient classification is completed by a combination of the 17-gene signature and stage information, which is for better survival prediction and treatment decisions. Besides, 11 genes in the signature, such as coiled-coil domain containing 73 (CCDC73) and protein kinase, DNA-activated, and catalytic subunit (PRKDC), are proved to be prognosis marker genes or strongly associated with prognosis and progress of other types of cancer in published literature already. As a result, this paper would more accurately predict a patient's prognosis and improve surveillance in the clinical setting, which may provide a quantitative and reliable decision-making basis for the treatment plan.
Collapse
|
11
|
Yu Y, Creighton EK, Buckley RM, Lyons LA. A Deletion in GDF7 is Associated with a Heritable Forebrain Commissural Malformation Concurrent with Ventriculomegaly and Interhemispheric Cysts in Cats. Genes (Basel) 2020; 11:E672. [PMID: 32575532 PMCID: PMC7349246 DOI: 10.3390/genes11060672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
An inherited neurologic syndrome in a family of mixed-breed Oriental cats has been characterized as forebrain commissural malformation, concurrent with ventriculomegaly and interhemispheric cysts. However, the genetic basis for this autosomal recessive syndrome in cats is unknown. Forty-three cats were genotyped on the Illumina Infinium Feline 63K iSelect DNA Array and used for analyses. Genome-wide association studies, including a sib-transmission disequilibrium test and a case-control association analysis, and homozygosity mapping, identified a critical region on cat chromosome A3. Short-read whole genome sequencing was completed for a cat trio segregating with the syndrome. A homozygous 7 bp deletion in growth differentiation factor 7 (GDF7) (c.221_227delGCCGCGC [p.Arg74Profs]) was identified in affected cats, by comparison to the 99 Lives Cat variant dataset, validated using Sanger sequencing and genotyped by fragment analyses. This variant was not identified in 192 unaffected cats in the 99 Lives dataset. The variant segregated concordantly in an extended pedigree. In mice, GDF7 mRNA is expressed within the roof plate when commissural axons initiate ventrally-directed growth. This finding emphasized the importance of GDF7 in the neurodevelopmental process in the mammalian brain. A genetic test can be developed for use by cat breeders to eradicate this variant.
Collapse
Affiliation(s)
- Yoshihiko Yu
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (Y.Y.); (E.K.C.); (R.M.B.)
- Laboratory of Veterinary Radiology, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Erica K. Creighton
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (Y.Y.); (E.K.C.); (R.M.B.)
| | - Reuben M. Buckley
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (Y.Y.); (E.K.C.); (R.M.B.)
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (Y.Y.); (E.K.C.); (R.M.B.)
| | | |
Collapse
|
12
|
Wang S, Zhang J, He X, Zhang Y, Chen J, Su Q, Pang S, Zhang S, Cui Y, Yan B. Identification and functional analysis of genetic variants in TBX5 gene promoter in patients with acute myocardial infarction. BMC Cardiovasc Disord 2019; 19:265. [PMID: 31775637 PMCID: PMC6880377 DOI: 10.1186/s12872-019-1237-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/24/2019] [Indexed: 01/09/2023] Open
Abstract
Background Coronary artery disease (CAD), including acute myocardial infarction (AMI), is a common complex disease. Although a great number of genetic loci and variants for CAD have been identified, genetic causes and underlying mechanisms remain largely unclear. Epidemiological studies have revealed that CAD incidence is strikingly higher in patients with congenital heart disease than that in normal population. T-box transcription factors play critical roles in embryonic development. In particular, TBX5 as a dosage-sensitive regulator is required for cardiac development and function. Thus, dysregulated TBX5 gene expression may be involved in CAD development. Methods TBX5 gene promoter was genetically and functionally analysed in large groups of AMI patients (n = 432) and ethnic-matched healthy controls (n = 448). Results Six novel heterozygous DNA sequence variants (DSVs) in the TBX5 gene promoter (g.4100A > G, g.4194G > A, g.4260 T > C, g.4367C > A, g.4581A > G and g.5004G > T) were found in AMI patients, but in none of controls. These DSVs significantly changed the activity of TBX5 gene promoter in cultured cells (P < 0.05). Furthermore, three of the DSVs (g.4100A > G, g.4260 T > C and g.4581A > G) evidently modified the binding sites of unknown transcription factors. Conclusions The DSVs identified in AMI patients may alter TBX5 gene promoter activity and change TBX5 level, contributing to AMI development as a rare risk factor.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Jie Zhang
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Xiaohui He
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Yexin Zhang
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Jing Chen
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Qiang Su
- Department of Medicine, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, China.,Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China
| | - Shufang Zhang
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, China
| | - Yinghua Cui
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, China.
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, China. .,Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China. .,Center for Molecular Genetics of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| |
Collapse
|
13
|
Xie SH, Lagergren J. Risk factors for oesophageal cancer. Best Pract Res Clin Gastroenterol 2018; 36-37:3-8. [PMID: 30551854 DOI: 10.1016/j.bpg.2018.11.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/19/2018] [Indexed: 01/31/2023]
Abstract
The two main histological subtypes of oesophageal cancer, squamous cell carcinoma and adenocarcinoma, have distinct risk factor profiles. For oesophageal squamous cell carcinoma, tobacco smoking and excess alcohol use are the main risk factors. For adenocarcinoma, gastro-oesophageal reflux disease and obesity are main risk factors, whereas tobacco smoking is a moderately strong risk factor and infection with Helicobacter pylori decreases the risk. Dietary factors may influence the risk of both types of oesophageal cancer. Genetic factors are involved in the aetiology, but their influence is generally low. The striking male predominance in oesophageal adenocarcinoma is unexplained, although sex hormones may play a role. Risk prediction models combining information on multiple risk factors have shown promising potential in identifying high-risk individuals for targeted prevention and early detection, which should prompt further studies. More high-quality research efforts are warranted for better understanding of the aetiology of oesophageal cancer, particularly in developing countries.
Collapse
Affiliation(s)
- Shao-Hua Xie
- Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Jesper Lagergren
- Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; School of Cancer and Pharmaceutical Sciences, King's College London, United Kingdom
| |
Collapse
|
14
|
Pellatt AJ, Mullany LE, Herrick JS, Sakoda LC, Wolff RK, Samowitz WS, Slattery ML. The TGFβ-signaling pathway and colorectal cancer: associations between dysregulated genes and miRNAs. J Transl Med 2018; 16:191. [PMID: 29986714 PMCID: PMC6038278 DOI: 10.1186/s12967-018-1566-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/29/2018] [Indexed: 12/19/2022] Open
Abstract
Background The TGFβ-signaling pathway plays an important role in the pathogenesis of colorectal cancer (CRC). Loss of function of several genes within this pathway, such as bone morphogenetic proteins (BMPs) have been seen as key events in CRC progression. Methods In this study we comprehensively evaluate differential gene expression (RNASeq) of 81 genes in the TGFβ-signaling pathway and evaluate how dysregulated genes are associated with miRNA expression (Agilent Human miRNA Microarray V19.0). We utilize paired carcinoma and normal tissue from 217 CRC cases. We evaluate the associations between differentially expressed genes and miRNAs and sex, age, disease stage, and survival months. Results Thirteen genes were significantly downregulated and 14 were significantly upregulated after considering fold change (FC) of > 1.50 or < 0.67 and multiple comparison adjustment. Bone morphogenetic protein genes BMP5, BMP6, and BMP2 and growth differentiation factor GDF7 were downregulated. BMP4, BMP7, INHBA (Inhibin beta A), TGFBR1, TGFB2, TGIF1, TGIF2, and TFDP1 were upregulated. In general, genes with the greatest dysregulation, such as BMP5 (FC 0.17, BMP6 (FC 0.25), BMP2 (FC 0.32), CDKN2B (FC 0.32), MYC (FC 3.70), BMP7 (FC 4.17), and INHBA (FC 9.34) showed dysregulation in the majority of the population (84.3, 77.4, 81.1, 80.2, 82.0, 51.2, and 75.1% respectively). Four genes, TGFBR2, ID4, ID1, and PITX2, were un-associated or slightly upregulated in microsatellite-stable (MSS) tumors while downregulated in microsatellite-unstable (MSI) tumors. Eight dysregulated genes were associated with miRNA differential expression. E2F5 and THBS1 were associated with one or two miRNAs; RBL1, TGFBR1, TGIF2, and INHBA were associated with seven or more miRNAs with multiple seed-region matches. Evaluation of the joint effects of mRNA:miRNA identified interactions that were stronger in more advanced disease stages and varied by survival months. Conclusion These data support an interaction between miRNAs and genes in the TGFβ-signaling pathway in association with CRC risk. These interactions are associated with unique clinical characteristics that may provide targets for further investigations. Electronic supplementary material The online version of this article (10.1186/s12967-018-1566-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Lila E Mullany
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| | - Jennifer S Herrick
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Roger K Wolff
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Martha L Slattery
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA.
| |
Collapse
|
15
|
Coleman HG, Xie SH, Lagergren J. The Epidemiology of Esophageal Adenocarcinoma. Gastroenterology 2018; 154:390-405. [PMID: 28780073 DOI: 10.1053/j.gastro.2017.07.046] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022]
Abstract
The incidence of esophageal adenocarcinoma (EAC) has increased in many Western countries and is higher in men than women. Some risk factors for EAC have been identified-mainly gastroesophageal reflux disease, Barrett's esophagus, obesity, and tobacco smoking. It is not clear whether interventions to address these factors can reduce risk of EAC, although some evidence exists for smoking cessation. Although consumption of alcohol is not associated with EAC risk, other exposures, such as physical activity, nutrition, and medication use, require further study. Genetic variants have been associated with risk for EAC, but their overall contribution is low. Studies are needed to investigate associations between risk factors and the molecular subtypes of EAC. The prognosis for patients with EAC has slightly improved, but remains poor-screening and surveillance trials of high-risk individuals are needed.
Collapse
Affiliation(s)
- Helen G Coleman
- Cancer Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, UK.
| | - Shao-Hua Xie
- Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Lagergren
- Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Division of Cancer Studies, King's College London, United Kingdom
| |
Collapse
|
16
|
Shao D, Ma J, Zhou C, Zhao JN, Li LL, Zhao TJ, Ai XL, Jiao P. STAT3 down-regulation induces mitochondria-dependent G2/M cell cycle arrest and apoptosis in oesophageal carcinoma cells. Clin Exp Pharmacol Physiol 2017; 44:413-420. [PMID: 27896845 DOI: 10.1111/1440-1681.12708] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
Abstract
STAT3 is persistently activated in a wide variety of human tumours, and aberrant STAT3 activity promotes tumour growth, invasion and metastasis. To explore STAT3 down-regulation in human oesophageal cancer cells, cell proliferation, apoptosis and mitochondrial mechanisms were explored in oesophageal carcinoma TE1 cell cultures. We demonstrate for the first time that STAT3 down-regulation by RNAi is sufficient to inhibit oesophageal cancer cell proliferation inducing cell apoptosis. Further, we demonstrate that mitochondrial transmembrane potential is impaired thereby leading to collapsed mitochondrial membrane potential, abnormal mitochondrial membrane depolarization, nuclear DNA fragmentation and cell cycle G2/M arrest under the conditions of STAT3 down-regulation. Thus, our results suggest that STAT3 inhibition is a valid approach to induce oesophageal carcinoma cell mitochondrial-dependent apoptosis in therapeutic strategies against oesophageal cancers.
Collapse
Affiliation(s)
- Dan Shao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China.,The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jie Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Chao Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jia-Nan Zhao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Lu-Lu Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Tong-Jian Zhao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xi-Lei Ai
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Ping Jiao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
17
|
Zhu T, Qiao L, Wang Q, Mi R, Chen J, Lu Y, Gu J, Zheng Q. T-box family of transcription factor-TBX5, insights in development and disease. Am J Transl Res 2017; 9:442-453. [PMID: 28337273 PMCID: PMC5340680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
The T-box gene family refers to a group of transcription factors that share a highly conserved, sequence-specific DNA-binding domain (T-box) containing around 180-amino acids. According to HUGO gene nomenclature committee (HGNC), there are 18 T-box family members. These T-box genes have been implicated essential roles during embryogenesis and cardiac development, given their specific expression pattern in developing mammalian heart for several T-box genes, including TBX5. TBX5 is consisted of three transcriptional variants which cover 9 exons and encode two distinct isoforms that differ in N-terminus. TBX5 is probably the most frequently studied T-box gene over the past decade due to the typical cardiac defects observed in Holt-Oram syndrome (HOS), which is caused by TBX5 mutation. Most of the mutations are within exons 3-7 where locate sequence coding for the T-box domain. Notably, a variety of cardiac defects, as well as abnormalities in limb and other organs have been seen in HOS syndrome with different kinds of TBX5 mutations, suggesting a heterogeneous disease mechanism. We have performed a meta-analysis of TBX5 and found a significant correlation between its single nucleotide polymorphism (SNP) rs3825214 (A to G), and risk of atrial fibrillation and its subtypes, supporting TBX5 as a master transcription factor for cardiac development. In addition, bioinformatics analysis of this SNP identified several TFs that may be affected for their binding affinity with TBX5. Identification and characterization of more TBX5 mutations and SNPs hold promise for therapeutic strategy targeting TBX5 associated developmental abnormalities and diseases.
Collapse
Affiliation(s)
- Ting Zhu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Longwei Qiao
- The Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical UniversitySuzhou, Jiangsu 215008, China
| | - Qian Wang
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Rui Mi
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Jinnan Chen
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Yaojuan Lu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Junxia Gu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| |
Collapse
|
18
|
Becker J, May A, Gerges C, Anders M, Schmidt C, Veits L, Noder T, Mayershofer R, Kreuser N, Manner H, Venerito M, Hofer JH, Lyros O, Ahlbrand CJ, Arras M, Hofer S, Heinrichs SKM, Weise K, Hess T, Böhmer AC, Kosiol N, Kiesslich R, Izbicki JR, Hölscher AH, Bollschweiler E, Malfertheiner P, Lang H, Moehler M, Lorenz D, Ott K, Schmidt T, Nöthen MM, Hackelsberger A, Schumacher B, Pech O, Vashist Y, Vieth M, Weismüller J, Knapp M, Neuhaus H, Rösch T, Ell C, Gockel I, Schumacher J. The Barrett-associated variants at GDF7 and TBX5 also increase esophageal adenocarcinoma risk. Cancer Med 2016; 5:888-91. [PMID: 26783083 PMCID: PMC4864818 DOI: 10.1002/cam4.641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022] Open
Abstract
Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC) represent two stages within the esophagitis-metaplasia-dysplasia-adenocarcinoma sequence. Previously genetic risk factors have been identified that confer risk to BE and EAC development. However, to which extent the genetic variants confer risk to different stages of the BE/EAC sequence remains mainly unknown. In this study we analyzed three most recently identified BE variants at the genes GDF7 (rs3072), TBX5 (rs2701108), and ALDH1A2 (rs3784262) separately in BE and EAC samples in order to determine their risk effects during BE/EAC sequence. Our data show that rs3072 at GDF7 and rs2701108 at TBX5 are also associated with EAC and conclude that both loci confer disease risk also at later stages of the BE/EAC sequence. In contrast, rs3784262 at ALDH1A2 was highly significantly associated with BE, but showed no association with EAC. Our data do not provide evidence that the ALDH1A2 locus confers equal risk in early and late stages of BE/EAC sequence.
Collapse
Affiliation(s)
- Jessica Becker
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Andrea May
- Department of Medicine II, Sana Klinikum, Offenbach, Germany
| | - Christian Gerges
- Department of Internal Medicine II, Evangelisches Krankenhaus, Düsseldorf, Germany
| | - Mario Anders
- Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Departments of Gastroenterology and Interdisciplinary Endoscopy, Vivantes Wenckebach-Kinikum, Berlin, Germany
| | - Claudia Schmidt
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Lothar Veits
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Tania Noder
- Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Nicole Kreuser
- Department of Visceral Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Hendrik Manner
- Department of Internal Medicine II, HSK Hospital, Wiesbaden, Germany
| | - Marino Venerito
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | | | - Orestis Lyros
- Department of Visceral Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Constantin J Ahlbrand
- Department of General, Visceral and Transplant Surgery, University Medical Center, University of Mainz, Mainz, Germany
| | - Michael Arras
- Department of General, Visceral and Transplant Surgery, University Medical Center, University of Mainz, Mainz, Germany
| | - Sebastian Hofer
- Department of General, Visceral and Transplant Surgery, University Medical Center, University of Mainz, Mainz, Germany
| | - Sophie K M Heinrichs
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Katharina Weise
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Timo Hess
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Anne C Böhmer
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Nils Kosiol
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Ralf Kiesslich
- Department of Internal Medicine II, HSK Hospital, Wiesbaden, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Arnulf H Hölscher
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Elfriede Bollschweiler
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center, University of Mainz, Mainz, Germany
| | - Markus Moehler
- First Department of Internal Medicine, University Medical Center, University of Mainz, Mainz, Germany
| | - Dietmar Lorenz
- Departments of General and Visceral Surgery, Sana Klinikum, Offenbach, Germany
| | - Katja Ott
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.,Department of General, Visceral and Thorax Surgery, RoMed Klinikum Rosenheim, Rosenheim, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Thorax Surgery, RoMed Klinikum Rosenheim, Rosenheim, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | | | - Brigitte Schumacher
- Department of Internal Medicine II, Evangelisches Krankenhaus, Düsseldorf, Germany.,Departments of Internal Medicine and Gastroenterology, Elisabeth Hospital, Essen, Germany
| | - Oliver Pech
- Departments of Gastroenterology and Interventional Endoscopy, St. John of God Hospital, Regensburg, Germany
| | - Yogesh Vashist
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | | | - Michael Knapp
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Horst Neuhaus
- Department of Internal Medicine II, Evangelisches Krankenhaus, Düsseldorf, Germany
| | - Thomas Rösch
- Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Ell
- Department of Medicine II, Sana Klinikum, Offenbach, Germany
| | - Ines Gockel
- Department of Visceral Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Johannes Schumacher
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| |
Collapse
|