1
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
2
|
Ge Q, Liu Y, You W, Wang W, Li K, Ruan X, Xie L, Wang T, Zhang L. Prebiotic synthesis of mineral-bearing microdroplet from inorganic carbon photoreduction at air-water interface. PNAS NEXUS 2023; 2:pgad389. [PMID: 38034096 PMCID: PMC10682977 DOI: 10.1093/pnasnexus/pgad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
The origin of life on Earth is an enigmatic and intricate conundrum that has yet to be comprehensively resolved despite recent significant developments within the discipline of archaeology and geology. Chemically, metal-sulfide minerals are speculated to serve as an important medium for giving birth in early life, while yet so far direct evidence to support the hypothesis for the highly efficient conversion of inorganic carbon into praxiological biomolecules remains scarce. In this work, we provide an initial indication that sphalerite, employed as a typical mineral, shows its enormous capability for promoting the conversion of inorganic carbon into elementary biomolecule formic acid (HCOOH) in airborne mineral-bearing aerosol microdroplet, which is over two orders of magnitude higher than that of the corresponding conventional bulk-like aqueous phase medium in the environment (e.g. river, lake, sea, etc.). This significant enhancement was further validated by a wide range of minerals and clays, including CuS, NiS, CoS, CdS, MnS, elemental sulfur, Arizona Test Dust, loess, nontronite, and montmorillonite. We reveal that the abundant interface of unique physical-chemical features instinct for aerosol or cloud microdroplets reduces the reaction energy barrier for the reaction, thus leading to extremely high HCOOH production (2.52 × 1014 kg year-1). This study unfolds unrecognized remarkable contributions of the considered scheme in the accumulation of prebiotic biomolecules in the ancient period of the Earth.
Collapse
Affiliation(s)
- Qiuyue Ge
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Wenbo You
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Kejian Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Xuejun Ruan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Lifang Xie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
3
|
Ma X, He J, Liu Y, Bai X, Leng J, Zhao Y, Chen D, Wang J. Plant Photocatalysts: Photoinduced Oxidation and Reduction Abilities of Plant Leaf Ashes under Solar Light. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2260. [PMID: 37570577 PMCID: PMC10421452 DOI: 10.3390/nano13152260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Plant leaf ashes were obtained via the high temperature calcination of the leaves of various plants, such as sugarcane, couchgrass, bracteata, garlic sprout, and the yellowish leek. Although the photosynthesis systems in plant leaves cannot exist after calcination, minerals in these ashes were found to exhibit photochemical activities. The samples showed solar light photocatalytic oxidation activities sufficient to degrade methylene blue dye. They were also shown to possess intrinsic dehydrogenase-like activities in reducing the colorless electron acceptor 2,3,5-triphenyltetrazolium chloride to a red formazan precipitate under solar light irradiation. The possible reasons behind these two unreported phenomena were also investigated. These ashes were characterized using a combination of physicochemical techniques. Moreover, our findings exemplify how the soluble and insoluble minerals in plant leaf ashes can be synergistically designed to yield next-generation photocatalysts. It may also lead to advances in artificial photosynthesis and photocatalytic dehydrogenase.
Collapse
Affiliation(s)
- Xiaoqian Ma
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Jiao He
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Yu Liu
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Xiaoli Bai
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Junyang Leng
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Yi Zhao
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Daomei Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Jiaqiang Wang
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| |
Collapse
|
4
|
Neidhöfer C. On the Evolution of the Biological Framework for Insight. PHILOSOPHIES 2021; 6:43. [DOI: 10.3390/philosophies6020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The details of abiogenesis, to date, remain a matter of debate and constitute a key mystery in science and philosophy. The prevailing scientific hypothesis implies an evolutionary process of increasing complexity on Earth starting from (self-) replicating polymers. Defining the cut-off point where life begins is another moot point beyond the scope of this article. We will instead walk through the known evolutionary steps that led from these first exceptional polymers to the vast network of living biomatter that spans our world today, focusing in particular on perception, from simple biological feedback mechanisms to the complexity that allows for abstract thought. We will then project from the well-known to the unknown to gain a glimpse into what the universe aims to accomplish with living matter, just to find that if the universe had ever planned to be comprehended, evolution still has a long way to go.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, 52127 Bonn, Germany
| |
Collapse
|
5
|
Gottesman ME, Chudaev M, Mustaev A. Key features of magnesium that underpin its role as the major ion for electrophilic biocatalysis. FEBS J 2020; 287:5439-5463. [DOI: 10.1111/febs.15318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/06/2020] [Accepted: 03/30/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Max E. Gottesman
- Department of Microbiology & Immunology Columbia University Medical Center New York NY USA
| | - Maxim Chudaev
- Public Health Research Institute & Department of Microbiology and Molecular Genetics New Jersey Medical School Rutgers Biomedical and Health Sciences Newark NJ USA
| | - Arkady Mustaev
- Public Health Research Institute & Department of Microbiology and Molecular Genetics New Jersey Medical School Rutgers Biomedical and Health Sciences Newark NJ USA
| |
Collapse
|
6
|
Bartlett S, Wong ML. Defining Lyfe in the Universe: From Three Privileged Functions to Four Pillars. Life (Basel) 2020; 10:E42. [PMID: 32316364 PMCID: PMC7235751 DOI: 10.3390/life10040042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
Motivated by the need to paint a more general picture of what life is-and could be-with respect to the rest of the phenomena of the universe, we propose a new vocabulary for astrobiological research. Lyfe is defined as any system that fulfills all four processes of the living state, namely: dissipation, autocatalysis, homeostasis, and learning. Life is defined as the instance of lyfe that we are familiar with on Earth, one that uses a specific organometallic molecular toolbox to record information about its environment and achieve dynamical order by dissipating certain planetary disequilibria. This new classification system allows the astrobiological community to more clearly define the questions that propel their research-e.g., whether they are developing a historical narrative to explain the origin of life (on Earth), or a universal narrative for the emergence of lyfe, or whether they are seeking signs of life specifically, or lyfe at large across the universe. While the concept of "life as we don't know it" is not new, the four pillars of lyfe offer a novel perspective on the living state that is indifferent to the particular components that might produce it.
Collapse
Affiliation(s)
- Stuart Bartlett
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Michael L. Wong
- Department of Astronomy and Astrobiology Program, University of Washington, Seattle, WA 98195, USA;
- NASA Nexus for Exoplanet System Science’s Virtual Planetary Laboratory, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Dibrova DV, Shalaeva DN, Galperin MY, Mulkidjanian AY. Emergence of cytochrome bc complexes in the context of photosynthesis. PHYSIOLOGIA PLANTARUM 2017; 161:150-170. [PMID: 28493482 PMCID: PMC5600118 DOI: 10.1111/ppl.12586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/22/2017] [Accepted: 05/04/2017] [Indexed: 05/18/2023]
Abstract
The cytochrome bc (cyt bc) complexes are involved in Q-cycling; they oxidize membrane quinols by high-potential electron acceptors, such as cytochromes or plastocyanin, and generate transmembrane proton gradient. In several prokaryotic lineages, and also in plant chloroplasts, the catalytic core of the cyt bc complexes is built of a four-helical cytochrome b (cyt b) that contains three hemes, a three-helical subunit IV, and an iron-sulfur Rieske protein (cytochrome b6 f-type complexes). In other prokaryotic lineages, and also in mitochondria, the cyt b subunit is fused with subunit IV, yielding a seven- or eight-helical cyt b with only two hemes (cyt bc1 -type complexes). Here we present an updated phylogenomic analysis of the cyt b subunits of cyt bc complexes. This analysis provides further support to our earlier suggestion that (1) the ancestral version of cyt bc complex contained a small four-helical cyt b with three hemes similar to the plant cytochrome b6 and (2) independent fusion events led to the formation of large cyts b in several lineages. In the search for a primordial function for the ancestral cyt bc complex, we address the intimate connection between the cyt bc complexes and photosynthesis. Indeed, the Q-cycle turnover in the cyt bc complexes demands high-potential electron acceptors. Before the Great Oxygenation Event, the biosphere had been highly reduced, so high-potential electron acceptors could only be generated upon light-driven charge separation. It appears that an ancestral cyt bc complex capable of Q-cycling has emerged in conjunction with the (bacterio)chlorophyll-based photosynthetic systems that continuously generated electron vacancies at the oxidized (bacterio)chlorophyll molecules.
Collapse
Affiliation(s)
- Daria V. Dibrova
- A.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119991Russia
| | - Daria N. Shalaeva
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscow119991Russia
- School of PhysicsUniversity of OsnabrueckOsnabrueckD‐49069Germany
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of MedicineNational Institutes of HealthBethesdaMD20894USA
| | - Armen Y. Mulkidjanian
- A.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119991Russia
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscow119991Russia
- School of PhysicsUniversity of OsnabrueckOsnabrueckD‐49069Germany
| |
Collapse
|
8
|
Sharov AA. Coenzyme world model of the origin of life. Biosystems 2016; 144:8-17. [PMID: 26968100 PMCID: PMC4875852 DOI: 10.1016/j.biosystems.2016.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 12/23/2022]
Abstract
The origin of life means the emergence of heritable and evolvable self-reproduction. However the mechanisms of primordial heredity were different from those in contemporary cells. Here I argue that primordial life had no nucleic acids; instead heritable signs were represented by isolated catalytically active self-reproducing molecules, similar to extant coenzymes, which presumably colonized surfaces of oil droplets in water. The model further assumes that coenzyme-like molecules (CLMs) changed surface properties of oil droplets (e.g., by oxidizing terminal carbons), and in this way created and sustained favorable conditions for their own self-reproduction. Such niche-dependent self-reproduction is a necessary condition for cooperation between different kinds of CLMs because they have to coexist in the same oil droplets and either succeed or perish together. Additional kinds of hereditary molecules were acquired via coalescence of oil droplets carrying different kinds of CLMs or via modification of already existing CLMs. Eventually, polymerization of CLMs became controlled by other polymers used as templates; and this kind of template-based synthesis eventually resulted in the emergence of RNA-like replicons. Apparently, oil droplets transformed into the outer membrane of cells via engulfing water, stabilization of the surface, and osmoregulation. In result, the metabolism was internalized allowing cells to accumulate free-floating resources (e.g., animoacids, ATP), which was a necessary condition for the development of protein synthesis. Thus, life originated from simple but already functional molecules, and its gradual evolution towards higher complexity was driven by cooperation and natural selection.
Collapse
Affiliation(s)
- Alexei A Sharov
- National Institute on Aging, Genetics Laboratory, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| |
Collapse
|
9
|
Laskowski M, Augustynek B, Kulawiak B, Koprowski P, Bednarczyk P, Jarmuszkiewicz W, Szewczyk A. What do we not know about mitochondrial potassium channels? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1247-1257. [PMID: 26951942 DOI: 10.1016/j.bbabio.2016.03.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 01/14/2023]
Abstract
In this review, we summarize our knowledge about mitochondrial potassium channels, with a special focus on unanswered questions in this field. The following potassium channels have been well described in the inner mitochondrial membrane: ATP-regulated potassium channel, Ca(2+)-activated potassium channel, the voltage-gated Kv1.3 potassium channel, and the two-pore domain TASK-3 potassium channel. The primary functional roles of these channels include regulation of mitochondrial respiration and the alteration of membrane potential. Additionally, they modulate the mitochondrial matrix volume and the synthesis of reactive oxygen species by mitochondria. Mitochondrial potassium channels are believed to contribute to cytoprotection and cell death. In this paper, we discuss fundamental issues concerning mitochondrial potassium channels: their molecular identity, channel pharmacology and functional properties. Attention will be given to the current problems present in our understanding of the nature of mitochondrial potassium channels. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Michał Laskowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Bartłomiej Augustynek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Biophysics, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Wieslawa Jarmuszkiewicz
- Laboratory of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
10
|
Spitzer J, Pielak GJ, Poolman B. Emergence of life: Physical chemistry changes the paradigm. Biol Direct 2015; 10:33. [PMID: 26059688 PMCID: PMC4460864 DOI: 10.1186/s13062-015-0060-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/14/2015] [Indexed: 12/02/2022] Open
Abstract
Origin of life research has been slow to advance not only because of its complex evolutionary nature (Franklin Harold: In Search of Cell History, 2014) but also because of the lack of agreement on fundamental concepts, including the question of ‘what is life?’. To re-energize the research and define a new experimental paradigm, we advance four premises to better understand the physicochemical complexities of life’s emergence:Chemical and Darwinian (biological) evolutions are distinct, but become continuous with the appearance of heredity. Earth’s chemical evolution is driven by energies of cycling (diurnal) disequilibria and by energies of hydrothermal vents. Earth’s overall chemical complexity must be high at the origin of life for a subset of (complex) chemicals to phase separate and evolve into living states. Macromolecular crowding in aqueous electrolytes under confined conditions enables evolution of molecular recognition and cellular self-organization.
We discuss these premises in relation to current ‘constructive’ (non-evolutionary) paradigm of origins research – the process of complexification of chemical matter ‘from the simple to the complex’. This paradigm artificially avoids planetary chemical complexity and the natural tendency of molecular compositions toward maximum disorder embodied in the second law of thermodynamics. Our four premises suggest an empirical program of experiments involving complex chemical compositions under cycling gradients of temperature, water activity and electromagnetic radiation.
Collapse
Affiliation(s)
- Jan Spitzer
- R&D Department, Mallard Creek Polymers, Inc., 2800 Morehead Rd, Charlotte, NC, 28262, USA.
| | - Gary J Pielak
- Department of Chemistry, Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands.
| |
Collapse
|
11
|
Abstract
All life on earth can be naturally classified into cellular life forms and virus-like selfish elements, the latter being fully dependent on the former for their reproduction. Cells are reproducers that not only replicate their genome but also reproduce the cellular organization that depends on semipermeable, energy-transforming membranes and cannot be recovered from the genome alone, under the famous dictum of Rudolf Virchow, Omnis cellula e cellula. In contrast, simple selfish elements are replicators that can complete their life cycles within the host cell starting from genomic RNA or DNA alone. The origin of the cellular organization is the central and perhaps the hardest problem of evolutionary biology. I argue that the origin of cells can be understood only in conjunction with the origin and evolution of selfish genetic elements. A scenario of precellular evolution is presented that involves cohesion of the genomes of the emerging cellular life forms from primordial pools of small genetic elements that eventually segregated into hosts and parasites. I further present a model of the coevolution of primordial membranes and membrane proteins, discuss protocellular and non-cellular models of early evolution, and examine the habitats on the primordial earth that could have been conducive to precellular evolution and the origin of cells.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institute of Health, Bethesda, MD, 20894, USA,
| |
Collapse
|
12
|
Egel R. Life's Order, Complexity, Organization, and Its Thermodynamic-Holistic Imperatives. Life (Basel) 2012; 2:323-63. [PMID: 25371269 PMCID: PMC4187152 DOI: 10.3390/life2040323] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/30/2012] [Accepted: 11/05/2012] [Indexed: 12/17/2022] Open
Abstract
In memoriam Jeffrey S. Wicken (1942-2002)-the evolutionarily minded biochemist, who in the 1970/80s strived for a synthesis of biological and physical theories to fathom the tentative origins of life. Several integrative concepts are worth remembering from Wicken's legacy. (i) Connecting life's origins and complex organization to a preexisting physical world demands a thermodynamically sound transition. (ii) Energetic 'charging' of the prebiosphere must precede the emergence of biological organization. (iii) Environmental energy gradients are exploited progressively, approaching maximum interactive structure and minimum dissipation. (iv) Dynamic self-assembly of prebiotic organic matter is driven by hydrophobic tension between water and amphiphilic building blocks, such as aggregating peptides from non-polar amino acids and base stacking in nucleic acids. (v) The dynamics of autocatalytic self-organization are facilitated by a multiplicity of weak interactions, such as hydrogen bonding, within and between macromolecular assemblies. (vi) The coevolution of (initially uncoded) proteins and nucleic acids in energy-coupled and metabolically active so-called 'microspheres' is more realistic as a kinetic transition model of primal biogenesis than 'hypercycle replication' theories for nucleic acid replicators on their own. All these considerations blend well with the current understanding that sunlight UV-induced photo-electronic excitation of colloidal metal sulfide particles appears most suitable as a prebiotic driver of organic synthesis reactions, in tight cooperation with organic, phase-separated, catalytic 'microspheres'. On the 'continuist vs. miraculist' schism described by Iris Fry for origins-of-life considerations (Table 1), Wicken was a fervent early protagonist of holistic 'continuist' views and agenda.
Collapse
Affiliation(s)
- Richard Egel
- Department of Biology, University of Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
13
|
Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV. Open questions on the origin of life at anoxic geothermal fields. ORIGINS LIFE EVOL B 2012; 42:507-16. [PMID: 23132762 PMCID: PMC3997052 DOI: 10.1007/s11084-012-9315-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
We have recently reconstructed the 'hatcheries' of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells (Mulkidjanian et al. Proc Natl Acad Sci U S A 109:E821-830, 2012). These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K⁺, Zn²⁺, Mn²⁺, and phosphate. Thus, protocells must have evolved in habitats with a high K⁺/Na⁺ ratio and relatively high concentrations of Zn, Mn and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under an anoxic, CO₂-dominated atmosphere, the ionic composition of pools of cool, condensed vapor at anoxic geothermal fields would resemble the internal milieu of modern cells. Such pools would be lined with porous silicate minerals mixed with metal sulfides and enriched in K⁺ ions and phosphorous compounds. Here we address some questions that have appeared in print after the publication of our anoxic geothermal field scenario. We argue that anoxic geothermal fields, which were identified as likely cradles of life by using a top-down approach and phylogenomics analysis, could provide geochemical conditions similar to those which were suggested as most conducive for the emergence of life by the chemists who pursuit the complementary bottom-up strategy.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- School of Physics, University of Osnabrueck, Barbarastrasse 7, 49076 Osnabrueck, Germany.
| | | | | | | | | |
Collapse
|
14
|
Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV. Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci U S A 2012; 109:E821-30. [PMID: 22331915 PMCID: PMC3325685 DOI: 10.1073/pnas.1117774109] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
All cells contain much more potassium, phosphate, and transition metals than modern (or reconstructed primeval) oceans, lakes, or rivers. Cells maintain ion gradients by using sophisticated, energy-dependent membrane enzymes (membrane pumps) that are embedded in elaborate ion-tight membranes. The first cells could possess neither ion-tight membranes nor membrane pumps, so the concentrations of small inorganic molecules and ions within protocells and in their environment would equilibrate. Hence, the ion composition of modern cells might reflect the inorganic ion composition of the habitats of protocells. We attempted to reconstruct the "hatcheries" of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells. These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K(+), Zn(2+), Mn(2+), and phosphate. Thus, protocells must have evolved in habitats with a high K(+)/Na(+) ratio and relatively high concentrations of Zn, Mn, and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under the anoxic, CO(2)-dominated primordial atmosphere, the chemistry of basins at geothermal fields would resemble the internal milieu of modern cells. The precellular stages of evolution might have transpired in shallow ponds of condensed and cooled geothermal vapor that were lined with porous silicate minerals mixed with metal sulfides and enriched in K(+), Zn(2+), and phosphorous compounds.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
- A. N. Belozersky Institute of Physico-Chemical Biology and Schools of
| | | | - Daria V. Dibrova
- School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
- Bioengineering and Bioinformatics, Moscow State University, Moscow 119992, Russia; and
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| |
Collapse
|
15
|
Mulkidjanian AY, Galperin MY. On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol Direct 2009; 4:27. [PMID: 19703275 PMCID: PMC2749021 DOI: 10.1186/1745-6150-4-27] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 08/24/2009] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The accompanying article (A.Y. Mulkidjanian, Biology Direct 4:26) puts forward a detailed hypothesis on the role of zinc sulfide (ZnS) in the origin of life on Earth. The hypothesis suggests that life emerged within compartmentalized, photosynthesizing ZnS formations of hydrothermal origin (the Zn world), assembled in sub-aerial settings on the surface of the primeval Earth. RESULTS If life started within photosynthesizing ZnS compartments, it should have been able to evolve under the conditions of elevated levels of Zn2+ ions, byproducts of the ZnS-mediated photosynthesis. Therefore, the Zn world hypothesis leads to a set of testable predictions regarding the specific roles of Zn2+ ions in modern organisms, particularly in RNA and protein structures related to the procession of RNA and the "evolutionarily old" cellular functions. We checked these predictions using publicly available data and obtained evidence suggesting that the development of the primeval life forms up to the stage of the Last Universal Common Ancestor proceeded in zinc-rich settings. Testing of the hypothesis has revealed the possible supportive role of manganese sulfide in the primeval photosynthesis. In addition, we demonstrate the explanatory power of the Zn world concept by elucidating several points that so far remained without acceptable rationalization. In particular, this concept implies a new scenario for the separation of Bacteria and Archaea and the origin of Eukarya. CONCLUSION The ability of the Zn world hypothesis to generate non-trivial veritable predictions and explain previously obscure items gives credence to its key postulate that the development of the first life forms started within zinc-rich formations of hydrothermal origin and was driven by solar UV irradiation. This concept implies that the geochemical conditions conducive to the origin of life may have persisted only as long as the atmospheric CO2 pressure remained above ca. 10 bar. This work envisions the first Earth biotopes as photosynthesizing and habitable areas of porous ZnS and MnS precipitates around primeval hot springs. Further work will be needed to provide details on the life within these communities and to elucidate the primordial (bio)chemical reactions. REVIEWERS This article was reviewed by Arcady Mushegian, Eugene Koonin, and Patrick Forterre. For the full reviews, please go to the Reviewers' reports section.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- School of Physics, Universität Osnabrück, D-49069 Osnabrück, Germany
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
16
|
Mulkidjanian AY. On the origin of life in the zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth. Biol Direct 2009; 4:26. [PMID: 19703272 PMCID: PMC3152778 DOI: 10.1186/1745-6150-4-26] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 08/24/2009] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The complexity of the problem of the origin of life has spawned a large number of possible evolutionary scenarios. Their number, however, can be dramatically reduced by the simultaneous consideration of various bioenergetic, physical, and geological constraints. RESULTS This work puts forward an evolutionary scenario that satisfies the known constraints by proposing that life on Earth emerged, powered by UV-rich solar radiation, at photosynthetically active porous edifices made of precipitated zinc sulfide (ZnS) similar to those found around modern deep-sea hydrothermal vents. Under the high pressure of the primeval, carbon dioxide-dominated atmosphere ZnS could precipitate at the surface of the first continents, within reach of solar light. It is suggested that the ZnS surfaces (1) used the solar radiation to drive carbon dioxide reduction, yielding the building blocks for the first biopolymers, (2) served as templates for the synthesis of longer biopolymers from simpler building blocks, and (3) prevented the first biopolymers from photo-dissociation, by absorbing from them the excess radiation. In addition, the UV light may have favoured the selective enrichment of photostable, RNA-like polymers. Falsification tests of this hypothesis are described in the accompanying article (A.Y. Mulkidjanian, M.Y. Galperin, Biology Direct 2009, 4:27). CONCLUSION The suggested "Zn world" scenario identifies the geological conditions under which photosynthesizing ZnS edifices of hydrothermal origin could emerge and persist on primordial Earth, includes a mechanism of the transient storage and utilization of solar light for the production of diverse organic compounds, and identifies the driving forces and selective factors that could have promoted the transition from the first simple, photostable polymers to more complex living organisms.
Collapse
|
17
|
Sharov AA. Coenzyme autocatalytic network on the surface of oil microspheres as a model for the origin of life. Int J Mol Sci 2009; 10:1838-1852. [PMID: 19468342 PMCID: PMC2680650 DOI: 10.3390/ijms10041838] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/14/2009] [Accepted: 04/16/2009] [Indexed: 11/16/2022] Open
Abstract
Coenzymes are often considered as remnants of primordial metabolism, but not as hereditary molecules. I suggest that coenzyme-like molecules (CLMs) performed hereditary functions before the emergence of nucleic acids. Autocatalytic CLMs modified (encoded) surface properties of hydrocarbon microspheres, to which they were anchored, and these changes enhanced autocatalysis and propagation of CLMs. Heredity started from a single kind of self-reproducing CLM, and then evolved into more complex coenzyme autocatalytic networks containing multiple kinds of CLMs. Polymerization of CLMs on the surface of microspheres and development of template-based synthesis is a potential evolutionary path towards the emergence of nucleic acids.
Collapse
Affiliation(s)
- Alexei A. Sharov
- Genetics Laboratory, National Institute on Aging, NIA/NIH / 251 Bayview Boulevard, Baltimore, MD 21224, USA; E-Mail:
; Tel. +1-410-558-8556; Fax: +1-410-558-8331
| |
Collapse
|
18
|
Mulkidjanian AY, Galperin MY, Koonin EV. Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci 2009; 34:206-15. [PMID: 19303305 DOI: 10.1016/j.tibs.2009.01.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 01/14/2023]
Abstract
Studies of the past several decades have provided major insights into the structural organization of biological membranes and mechanisms of many membrane molecular machines. However, the origin(s) of the membrane(s) and membrane proteins remains enigmatic. We discuss different concepts of the origin and early evolution of membranes with a focus on the evolution of the (im)permeability to charged molecules such as proteins, nucleic acids and small ions. Reconstruction of the evolution of F-type and A/V-type membrane ATPases (ATP synthases), which are either proton- or sodium-dependent, might help us to understand not only the origin of membrane bioenergetics but also of membranes themselves. We argue that evolution of biological membranes occurred as a process of co-evolution of lipid bilayers, membrane proteins and membrane bioenergetics.
Collapse
|