1
|
Liang Y, Yu C, Ma W. The automatic parameter-exploration with a machine-learning-like approach: Powering the evolutionary modeling on the origin of life. PLoS Comput Biol 2021; 17:e1009761. [PMID: 34965249 PMCID: PMC8752021 DOI: 10.1371/journal.pcbi.1009761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/11/2022] [Accepted: 12/15/2021] [Indexed: 11/19/2022] Open
Abstract
The origin of life involved complicated evolutionary processes. Computer modeling is a promising way to reveal relevant mechanisms. However, due to the limitation of our knowledge on prebiotic chemistry, it is usually difficult to justify parameter-setting for the modeling. Thus, typically, the studies were conducted in a reverse way: the parameter-space was explored to find those parameter values “supporting” a hypothetical scene (that is, leaving the parameter-justification a later job when sufficient knowledge is available). Exploring the parameter-space manually is an arduous job (especially when the modeling becomes complicated) and additionally, difficult to characterize as regular “Methods” in a paper. Here we show that a machine-learning-like approach may be adopted, automatically optimizing the parameters. With this efficient parameter-exploring approach, the evolutionary modeling on the origin of life would become much more powerful. In particular, based on this, it is expected that more near-reality (complex) models could be introduced, and thereby theoretical research would be more tightly associated with experimental investigation in this field–hopefully leading to significant steps forward in respect to our understanding on the origin of life. People have long been interested in the evolutionary processes through which life on our planet could have arisen from a non-life background. However, it seems that experimental studies in this field are proceeding slowly, perhaps owing to the complication of such processes. In the meantime, computer modeling has shown its potential to disclose the evolutionary mechanisms involved. Now a major difficulty of the computer modeling work is to justify the parameter-setting–on account of our limited knowledge on prebiotic chemistry and environments. Thus, people tend to explore the parameter space to seek parameter values in favor of the hypothetic scene and leave the parameter-justification a later job when sufficient knowledge is available. To date, the parameter-exploration is usually conducted manually (in many cases by trial and error), thus arduous and unpredictable. Inspired by the algorithm of machine-learning, we designed an automatic approach of parameter-exploration. The results showed that the approach is quite effective–that is, “good” parameter-sets in favor of hypothetic scenes in the origin of life can be found automatically. It is expected that such a machine-learning-like method would greatly enhance the efficiency of our evolutionary modeling studies on the origin of life in future.
Collapse
Affiliation(s)
- Yuzhen Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chunwu Yu
- College of Computer Sciences, Wuhan University, Wuhan, China
| | - Wentao Ma
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
2
|
Chen Y, Ma W. The origin of biological homochirality along with the origin of life. PLoS Comput Biol 2020; 16:e1007592. [PMID: 31914131 PMCID: PMC6974302 DOI: 10.1371/journal.pcbi.1007592] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/21/2020] [Accepted: 12/09/2019] [Indexed: 11/18/2022] Open
Abstract
How homochirality concerning biopolymers (DNA/RNA/proteins) could have originally occurred (i.e., arisen from a non-life chemical world, which tended to be chirality-symmetric) is a long-standing scientific puzzle. For many years, people have focused on exploring plausible physic-chemical mechanisms that may have led to prebiotic environments biased to one chiral type of monomers (e.g., D-nucleotides against L-nucleotides; L-amino-acids against D-amino-acids)–which should have then assembled into corresponding polymers with homochirality, but as yet have achieved no convincing advance. Here we show, by computer simulation–with a model based on the RNA world scenario, that the biased-chirality may have been established at polymer level instead, just deriving from a racemic mixture of monomers (i.e., equally with the two chiral types). In other words, the results suggest that the homochirality may have originated along with the advent of biopolymers during the origin of life, rather than somehow at the level of monomers before the origin of life. People have long been curious about the fact that central molecules in the living world (biopolymers), i.e., nucleic acids and proteins, are asymmetric in chirality (handedness), but as the relevant background, the chemical world is symmetric in chirality. Now that life should have originated from a prebiotic non-life background, how could this dissymmetry have occurred? Previous studies in this area focused their efforts on how the chirality-symmetry may have been broken at the monomer level (i.e., nucleotides or amino acids), but have achieved little advance over decades of years. Here we demonstrate, by in silico simulation, that instead, the required chirality-deviation may have been established along with the emergence of biopolymers at the beginning stage in the origin of life–just deriving from a chirality-symmetric monomer pool. The process is actually not only an issue of chemistry but also an issue involving evolution–thus previously difficult to reveal by pure lab work in this area. By modelling the evolutionary process, the present computer simulation study provides significant clues for experiments in future.
Collapse
Affiliation(s)
- Yong Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wentao Ma
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
3
|
Yin S, Chen Y, Yu C, Ma W. From molecular to cellular form: modeling the first major transition during the arising of life. BMC Evol Biol 2019; 19:84. [PMID: 30943915 PMCID: PMC6448278 DOI: 10.1186/s12862-019-1412-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 03/21/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND It has long been suggested that Darwinian evolution may have started at the molecular level and subsequently proceeded to a level with membrane boundary, i.e., of protocells. The transformation has been referred to as "the first major transition leading to life". However, so far, we actually have little knowledge about the relevant evolutionary mechanisms - and even about the plausibility - of such a transition. Here, based upon the scenario of the RNA world, we performed a computer simulation study to address this issue. RESULTS First, it was shown that at the molecular level, after the spread of one ribozyme (RNA replicase), another ribozyme (nucleotide synthetase) may emerge naturally in the system, and the two ribozymes would cooperate to spread in the naked scene. Then, when empty vesicles absorb the two ribozymes via "cytophagy", the resulting protocells may spread in the system and substitute the naked ribozymes. As for the driven power of such a transition, it was demonstrated that the membrane boundary's roles to ensure the cooperation between the two ribozymes and to prevent invasion of parasites are important. Beyond that, remarkably, it was found that another two factors may also have been significant: a possibly higher mobility of the raw materials in the environment (free water) and the protocells' potential capability to move around actively. Finally, the permeability of the membrane to raw materials was shown to be a major problem regarding the disadvantage for the cellular form. CONCLUSIONS The transition from the molecular level to the cellular level may have occurred naturally in early history of evolution. The evolutionary mechanisms for this process were complex. Besides the membrane boundary's roles to guarantee the molecular cooperation and to resist parasites, the greater chance for the protocells to access raw materials - either due to the diffusion of raw materials outside or the protocells' active movement, should also be highlighted, which may have at least to an extent compensated the disadvantage regarding the membrane's blocking effect against raw materials. The present study represents an effort of systematical exploration on this significant transition during the arising of life.
Collapse
Affiliation(s)
- Shaolin Yin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yong Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chunwu Yu
- College of Computer Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Wentao Ma
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
4
|
Exploration of RNA Sequence Space in the Absence of a Replicase. J Mol Evol 2018; 86:264-276. [PMID: 29748740 DOI: 10.1007/s00239-018-9846-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/04/2018] [Indexed: 12/29/2022]
Abstract
It is generally considered that if an RNA World ever existed that it would be driven by an RNA capable of RNA replication. Whether such a catalytic RNA could emerge in an RNA World or not, there would need to be prior routes to increasing complexity in order to produce it. It is hypothesized here that increasing sequence variety, if not complexity, can in fact readily emerge in response to a dynamic equilibrium between synthesis and degradation. A model system in which T4 RNA ligase catalyzes synthesis and Benzonase catalyzes degradation was constructed. An initial 20-mer served as a seed and was subjected to 180 min of simultaneous ligation and degradation. The seed RNA rapidly disappeared and was replaced by an increasing number and variety of both larger and smaller variants. Variants of 40-80 residues were consistently seen, typically representing 2-4% of the unique sequences. In a second experiment with four individual 9-mers, numerous variants were again produced. These included variants of the individual 9-mers as well as sequences that contained sequence segments from two or more 9-mers. In both cases, the RNA products lack large numbers of point mutations but instead incorporate additions and subtractions of fragments of the original RNAs. The system demonstrates that if such equilibrium were established in a prebiotic world it would result in significant exploration of RNA sequence space and likely increased complexity. It remains to be seen if the variety of products produced is affected by the presence of small peptide oligomers.
Collapse
|
5
|
Ma W. What Does "the RNA World" Mean to "the Origin of Life"? Life (Basel) 2017; 7:life7040049. [PMID: 29186049 PMCID: PMC5745562 DOI: 10.3390/life7040049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/30/2017] [Accepted: 11/24/2017] [Indexed: 12/30/2022] Open
Abstract
Corresponding to life’s two distinct aspects: Darwinian evolution and self-sustainment, the origin of life should also split into two issues: the origin of Darwinian evolution and the arising of self-sustainment. Because the “self-sustainment” we concern about life should be the self-sustainment of a relevant system that is “defined” by its genetic information, the self-sustainment could not have arisen before the origin of Darwinian evolution, which was just marked by the emergence of genetic information. The logic behind the idea of the RNA world is not as tenable as it has been believed. That is, genetic molecules and functional molecules, even though not being the same material, could have emerged together in the beginning and launched the evolution—provided that the genetic molecules can “simply” code the functional molecules. However, due to these or those reasons, alternative scenarios are generally much less convincing than the RNA world. In particular, when considering the accumulating experimental evidence that is supporting a de novo origin of the RNA world, it seems now quite reasonable to believe that such a world may have just stood at the very beginning of life on the Earth. Therewith, we acquire a concrete scenario for our attempts to appreciate those fundamental issues that are involved in the origin of life. In the light of those possible scenes included in this scenario, Darwinian evolution may have originated at the molecular level, realized upon a functional RNA. When two or more functional RNAs emerged, for their efficient cooperation, there should have been a selective pressure for the emergence of protocells. But it was not until the appearance of the “unitary-protocell”, which had all of its RNA genes linked into a chromosome, that Darwinian evolution made its full step towards the cellular level—no longer severely constrained by the low-grade evolution at the molecular level. Self-sustainment did not make sense before protocells emerged. The selection pressure that was favoring the exploration of more and more fundamental raw materials resulted in an evolutionary tendency of life to become more and more self-sustained. New functions for the entities to adapt to environments, including those that are involved in the self-sustainment per se, would bring new burdens to the self-sustainment—the advantage of these functions must overweigh the corresponding disadvantage.
Collapse
Affiliation(s)
- Wentao Ma
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
6
|
Wu S, Yu C, Zhang W, Yin S, Chen Y, Feng Y, Ma W. Tag mechanism as a strategy for the RNA replicase to resist parasites in the RNA world. PLoS One 2017; 12:e0172702. [PMID: 28253281 PMCID: PMC5333815 DOI: 10.1371/journal.pone.0172702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/08/2017] [Indexed: 01/01/2023] Open
Abstract
The idea that life may have started with an “RNA world” is attractive. Wherein, a crucial event (perhaps at the very beginning of the scenario) should have been the emergence of a ribozyme that catalyzes its own replication, i.e., an RNA replicase. Although now there is experimental evidence supporting the chemical feasibility of such a ribozyme, the evolutionary dynamics of how the replicase could overcome the “parasite” problem (because other RNAs may also exploit this ribozyme) and thrive, as described in the scenario, remains unclear. It has been suggested that spatial limitation may have been important for the replicase to confront parasites. However, more studies showed that such a mechanism is not sufficient when this ribozyme’s altruistic trait is taken into full consideration. “Tag mechanism”, which means labeling the replicase with a short subsequence for recognition in replication, may be a further mechanism supporting the thriving of the replicase. However, because parasites may also “equip” themselves with the tag, it is far from clear whether the tag mechanism could take effect. Here, we conducted a computer simulation using a Monte-Carlo model to study the evolutionary dynamics surrounding the development of a tag-driven (polymerase-type) RNA replicase in the RNA world. We concluded that (1) with the tag mechanism the replicase could resist the parasites and become prosperous, (2) the main underlying reason should be that the parasitic molecules, especially those strong parasites, are more difficult to appear in the tag-driven system, and (3) the tag mechanism has a synergic effect with the spatial limitation mechanism–while the former provides “time” for the replicase to escape from parasites, the latter provides “space” for the replicase to escape. Notably, tags may readily serve as “control handles”, and once the tag mechanism was exploited, the evolution towards complex life may have been much easier.
Collapse
Affiliation(s)
- Sanmao Wu
- College of Life Sciences, Wuhan University, Wuhan, P.R.China
| | - Chunwu Yu
- College of Computer Sciences, Wuhan University, Wuhan, P.R.China
| | - Wentao Zhang
- College of Computer Sciences, Wuhan University, Wuhan, P.R.China
| | - Shaolin Yin
- College of Life Sciences, Wuhan University, Wuhan, P.R.China
| | - Yong Chen
- College of Life Sciences, Wuhan University, Wuhan, P.R.China
| | - Yu Feng
- College of Life Sciences, Wuhan University, Wuhan, P.R.China
| | - Wentao Ma
- College of Life Sciences, Wuhan University, Wuhan, P.R.China
- * E-mail:
| |
Collapse
|
7
|
Ma W, Feng Y. Protocells: at the interface of life and non-life. Life (Basel) 2015; 5:447-58. [PMID: 25809963 PMCID: PMC4390862 DOI: 10.3390/life5010447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 02/02/2015] [Indexed: 02/07/2023] Open
Abstract
The cellular form, manifesting as a membrane-bounded system (comprising various functional molecules), is essential to life. The ultimate reason for this is that, typically, one functional molecule can only adopt one “correct” structure to perform one special function (e.g., an enzyme), and thus molecular cooperation is inevitable. While this is particularly true for advanced life with complex functions, it should have already been true for life at its outset with only limited functions, which entailed some sort of primitive cellular form—“protocells”. At the very beginning, the protocells may have even been unable to intervene in the growth of their own membrane, which can be called “pseudo-protocells”. Then, the ability to synthesize membrane components (amphiphiles) may have emerged under selective pressure, leading to “true-protocells”. The emergence of a “chromosome” (with genes linked together)—thus avoiding “gene-loss” during the protocell division, was another key event in the evolution of protocells. Such “unitary-protocells”, containing a central genetic molecule, may have appeared as a milestone—in principle, since then life could evolve endlessly, “gaining” more and more functions by introducing new genes. To synthesize in laboratory these different types of protocells, which stand at the interface between life and non-life, would greatly enhance our understanding on the essence of life.
Collapse
Affiliation(s)
- Wentao Ma
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yu Feng
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|