1
|
Wei J, Shao X, Guo J, Zheng Y, Wang Y, Zhang Z, Chen Y, Li Y. Rapid and selective removal of aristolochic acid I in natural products by vinylene-linked iCOF resins. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132140. [PMID: 37734311 DOI: 10.1016/j.jhazmat.2023.132140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/08/2023] [Accepted: 07/23/2023] [Indexed: 09/23/2023]
Abstract
Rapid, efficient, and selective removal of toxicants such as aristolochic acid I (AAI) from complex natural product systems is of great significance for the safe use of herbal medicines or medicine-food plants. Addressing this challenge, we develop a high-performance separation approach based on ionic covalent organic frameworks (iCOFs) to separate and remove AAI. Two vinylene-linked iCOFs (NKCOF-46-Br- and NKCOF-55-Br-) with high crystallinity are fabricated in a green and scalable fashion via a melt polymerization synthesis method. The resulting materials exhibit a uniform morphology, high stability, fast equilibrium time, and superior affinity and selectivity for AAI. Compared to conventional separation media, NKCOF-46-Br- and NKCOF-55-Br- achieve the record high adsorption capacities of 246.0 mg g-1 and 178.4 mg g-1, respectively. Various investigations reveal that the positively charged framework and favorable pore microenvironment of iCOFs contribute to their high selectivity and adsorption efficiency. Moreover, the iCOFs exhibit excellent biocompatibility by in vivo toxicity assays. This study paves a new avenue for the rapid, selective and efficient removal of toxicants from complex natural systems.
Collapse
Affiliation(s)
- Jinxia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xin Shao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinbiao Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yanxue Zheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuanyuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Wang C, Liu Y, Han J, Li W, Sun J, Wang Y. Detection and Removal of Aristolochic Acid in Natural Plants, Pharmaceuticals, and Environmental and Biological Samples: A Review. Molecules 2023; 29:81. [PMID: 38202664 PMCID: PMC10779802 DOI: 10.3390/molecules29010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Aristolochic acids (AAs) are a toxic substance present in certain natural plants. Direct human exposure to these plants containing AAs leads to a severe and irreversible condition known as aristolochic acid nephropathy (AAN). Additionally, AAs accumulation in the food chain through environmental mediators can trigger Balkan endemic nephropathy (BEN), an environmental variant of AAN. This paper presents a concise overview of the oncogenic pathways associated with AAs and explores the various routes of environmental exposure to AAs. The detection and removal of AAs in natural plants, drugs, and environmental and biological samples were classified and summarized, and the advantages and disadvantages of the various methods were analyzed. It is hoped that this review can provide effective insights into the detection and removal of AAs in the future.
Collapse
Affiliation(s)
- Changhong Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Yunchao Liu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Jintai Han
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Wenying Li
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China;
| | - Jing Sun
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (C.W.); (Y.L.); (J.H.)
| | - Yinan Wang
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
3
|
Lukinich-Gruia AT, Nortier J, Pavlović NM, Milovanović D, Popović M, Drăghia LP, Păunescu V, Tatu CA. Aristolochic acid I as an emerging biogenic contaminant involved in chronic kidney diseases: A comprehensive review on exposure pathways, environmental health issues and future challenges. CHEMOSPHERE 2022; 297:134111. [PMID: 35231474 DOI: 10.1016/j.chemosphere.2022.134111] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/13/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Described in the 1950s, Balkan Endemic Nephropathy (BEN) has been recognized as a chronic kidney disease (CKD) with clinical peculiarities and multiple etiological factors. Environmental contaminants - aromatic compounds, mycotoxins and phytotoxins like aristolochic acids (AAs) - polluting food and drinking water sources, were incriminated in BEN, due to their nephrotoxic and carcinogenic properties. The implication of AAs in BEN etiology is currently a highly debated topic due to the fact that they are found within the Aristolochiaceae plants family, used around the globe as traditional medicine and they were also incriminated in Aristolochic Acid Nephropathy (AAN). Exposure pathways have been investigated, but it is unclear to what extent AAs are acting alone or in synergy with other cofactors (environmental, genetics) in triggering kidney damage. Experimental studies strengthen the hypothesis that AAI, the most studied compound in the AAs class, is a significant environmental contaminant and a most important causative factor of BEN. The aim of this review is to compile information about the natural exposure pathways to AAI, via traditional medicinal plants, soil, crop plants, water, food, air. Data that either supports or contradicts the AAI theory concerning BEN etiology was consolidated and available solutions to reduce human exposure were discussed. Because AAI is a phytotoxin with physicochemical properties that allow its transportation in environmental matrices from different types of areas (endemic, nonendemic), and induce CKDs (BEN, AAN) and urinary cancers through bioaccumulation, this review aims to shed a new light on this compound as a biogenic emerging pollutant.
Collapse
Affiliation(s)
- Alexandra T Lukinich-Gruia
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723, Timisoara, Romania.
| | - Joëlle Nortier
- Nephrology Department, Brugmann Hospital & Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Belgium.
| | - Nikola M Pavlović
- Kidneya Therapeutics, Klare Cetkin 11, 11070, Belgrade, Serbia; University of Niš, Univerzitetski Trg 2, 18106, Niš, Serbia.
| | | | - Miloš Popović
- Department for Biology and Ecology, Faculty of Natural Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Lavinia Paula Drăghia
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723, Timisoara, Romania.
| | - Virgil Păunescu
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723, Timisoara, Romania; Department of Immunology, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. 2, Timisoara, 300041, Romania.
| | - Călin A Tatu
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723, Timisoara, Romania; Department of Immunology, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. 2, Timisoara, 300041, Romania.
| |
Collapse
|
4
|
Fan X, Kong D, He S, Chen J, Jiang Y, Ma Z, Feng J, Yan H. Phenanthrene Derivatives from Asarum heterotropoides Showed Excellent Antibacterial Activity against Phytopathogenic Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14520-14529. [PMID: 34813299 DOI: 10.1021/acs.jafc.1c04385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Asarum heterotropoides extracts showed strong antibacterial activity against selected phytopathogenic bacteria. Bioguided isolation was conducted to obtain 11 phenanthrene derivatives (1-11), 4 phenylpropanoids (12-15), a flavonoid (16), and a steroid (17), including a new phenanthrene derivative (1). In vitro bioassay results showed that phenanthrene derivatives are the main active components of A. heterotropoides extracts. The new compound aristoloxazine C (1) was found to exhibit outstanding antibacterial activity against Ralstonia solanacearum, Xanthomonas oryzae, Erwinia carolovora, Pseudomonas syringae, and Xanthomonas axonopodis, with MIC values of 0.05, 2.5, 2.5, 5, and 6.25 μg/mL, respectively. These values were significantly higher than that of the positive control, streptomycin sulfate. Aristoloxazine C (1) also demonstrated an excellent control effect on tobacco bacterial wilt. Physiological and biochemical experiments combined with electron microscopy showed that the antibacterial activity of aristoloxazine C (1) was primarily related to the destruction of the bacterial cell wall structure. Thus, aristoloxazine C (1) may have the potential to be used as a template for the development of new bactericides or as a probe for the discovery of new antimicrobial targets.
Collapse
Affiliation(s)
- Xiaojing Fan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Kong
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Shan He
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Junzheng Chen
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue Jiang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Juntao Feng
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - He Yan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Drăghia LP, Lukinich-Gruia AT, Oprean C, Pavlović NM, Păunescu V, Tatu CA. Aristolochic acid I: an investigation into the role of food crops contamination, as a potential natural exposure pathway. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4163-4178. [PMID: 33796971 DOI: 10.1007/s10653-021-00903-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Aristolochic acid I (AAI) is a potent nephrotoxic and carcinogenic compound produced by plants of the Aristolochiaceae family and thoroughly investigated as a main culprit in the etiology of Balkan endemic nephropathy (BEN). So far, the AAI exposure was demonstrated to occur through the consumption of Aristolochia clematitis plants as traditional remedies, and through the contamination of the surrounding environment in endemic areas: soil, food and water contamination. Our study investigated for the first time the level of AAI contamination in 141 soil and vegetable samples from two cultivated gardens in non-endemic areas, A. clematitis being present in only one of the gardens. We developed and validated a simple and sensitive ultra-high-performance liquid chromatography-ion trap mass spectrometry method for qualitative and quantitative AAI analysis. The results confirmed the presence of AAI at nanogram levels in soil and vegetable samples collected from the non-endemic garden, where A. clematitis grows. These findings provide additional evidence that the presence of A. clematitis can cause food crops and soil contamination and unveil the pathway through which AAI could move from A. clematitis to other plant species via a common matrix: the soil. Another issue regarding the presence of AAI, in a non-endemic BEN area from Romania, could underlie a more widespread environmental exposure to AAI and explain certain BEN-like cases in areas where BEN has not been initially described.
Collapse
Affiliation(s)
- Lavinia Paula Drăghia
- Department of Functional Sciences, University of Medicine and Pharmacy 'Victor Babes', Eftimie Murgu Sq. 2, 300041, Timisoara, Romania.
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania.
| | - Alexandra Teodora Lukinich-Gruia
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania.
| | - Camelia Oprean
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
- Department of Environmental and Food Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy 'Victor Babes', Eftimie Murgu Sq. 2, 300041, Timisoara, Romania
| | | | - Virgil Păunescu
- Department of Functional Sciences, University of Medicine and Pharmacy 'Victor Babes', Eftimie Murgu Sq. 2, 300041, Timisoara, Romania
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
| | - Călin Adrian Tatu
- Department of Functional Sciences, University of Medicine and Pharmacy 'Victor Babes', Eftimie Murgu Sq. 2, 300041, Timisoara, Romania
- Department of Chemistry and Toxicology, OncoGen Centre, County Hospital 'Pius Branzeu', Blvd. Liviu Rebreanu 156, 300736, Timisoara, Romania
| |
Collapse
|
6
|
Chen R, You X, Cao Y, Masumura K, Ando T, Hamada S, Horibata K, Wan J, Xi J, Zhang X, Honma M, Luan Y. Benchmark dose analysis of multiple genotoxicity endpoints in gpt delta mice exposed to aristolochic acid I. Mutagenesis 2021; 36:87-94. [PMID: 33367723 DOI: 10.1093/mutage/geaa034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/24/2020] [Indexed: 11/12/2022] Open
Abstract
As the carcinogenic risk of herbs containing aristolochic acids (AAs) is a global health issue, quantitative evaluation of toxicity is needed for the regulatory decision-making and risk assessment of AAs. In this study, we selected AA I (AAI), the most abundant and representative compound in AAs, to treat transgenic gpt delta mice at six gradient doses ranging from 0.125 to 4 mg/kg/day for 28 days. AAI-DNA adduct frequencies and gpt gene mutation frequencies (MFs) in the kidney, as well as Pig-a gene MFs and micronucleated reticulocytes (MN-RETs) frequencies in peripheral blood, were monitored. The dose-response (DR) relationship data for these in vivo genotoxicity endpoints were quantitatively evaluated using an advanced benchmark dose (BMD) approach with different critical effect sizes (CESs; i.e., BMD5, BMD10, BMD50 and BMD100). The results showed that the AAI-DNA adduct frequencies, gpt MFs and the MN-RETs presented good DR relationship to the administrated doses, and the corresponding BMDL100 (the lower 90% confidence interval of the BMD100) values were 0.017, 0.509 and 3.9 mg/kg/day, respectively. No positive responses were observed in the Pig-a MFs due to bone marrow suppression caused by AAI. Overall, we quantitatively evaluated the genotoxicity of AAI at low doses for multiple endpoints for the first time. Comparisons of BMD100 values across different endpoints provide a basis for the risk assessment and regulatory decision-making of AAs and are also valuable for understanding the genotoxicity mechanism of AAs.
Collapse
Affiliation(s)
- Ruixue Chen
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue You
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| | - Tomoko Ando
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| | - Shuichi Hamada
- Tokyo Laboratory BoZo Research Center Inc., Hanegi, Setagaya, Tokyo, Japan
| | - Katsuyoshi Horibata
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| | - Jingjing Wan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa, Japan
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Aristolochic acid IVa forms DNA adducts in vitro but is non-genotoxic in vivo. Arch Toxicol 2021; 95:2839-2850. [PMID: 34223934 DOI: 10.1007/s00204-021-03077-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/06/2021] [Indexed: 10/20/2022]
Abstract
Aristolochic acids (AAs) are a family of natural compounds with AA I and AA II being known carcinogens, whose bioactivation causes DNA adducts formation. However, other congeners have rarely been investigated. This study aimed to investigate genotoxicity of AA IVa, which differs from AA I by a hydroxyl group, abundant in Aristolochiaceae plants. AA IVa reacted with 2'-deoxyadenosine (dA) and 2'-deoxyguanosine (dG) to form three dA and five dG adducts as identified by high-resolution mass spectrometry, among which two dA and three dG adducts were detected in reactions of AA IVa with calf thymus DNA (CT DNA). However, no DNA adducts were detected in the kidney, liver, and forestomach of orally dosed mice at 40 mg/kg/day for 2 days, and bone marrow micronucleus assay also yielded negative results. Pharmacokinetic analyses of metabolites in plasma indicated that AA IVa was mainly O-demethylated to produce a metabolite with two hydroxyl groups, probably facilitating its excretion. Meanwhile, no reduced metabolites were detected. The competitive reaction of AA I and AA IVa with CT DNA, with adducts levels varying with pH of reaction revealed that AA IVa was significantly less reactive than AA I, probably by hydroxyl deprotonation of AA IVa, which was explained by theoretical calculations for reaction barriers, energy levels of the molecular orbits, and charges at the reaction sites. In brief, although it could form DNA adducts in vitro, AA IVa was non-genotoxic in vivo, which was attributed to its low reactivity and biotransformation into an easily excreted metabolite rather than bioactivation.
Collapse
|