1
|
Venkatesh R, Tiwari V, Kandasamy J. Copper(I)-Catalyzed Sandmeyer-Type S-Arylation of 1-Thiosugars with Aryldiazonium Salts under Mild Conditions. J Org Chem 2022; 87:11414-11432. [PMID: 35994736 DOI: 10.1021/acs.joc.2c00930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Preparation of S-aryl thioglycosides from 1-thiosugars via S-arylation was demonstrated under mild reaction conditions. A wide range of protected and unprotected 1-thiosugars derived from glucose, glucosamine, galactose, mannose, ribose, maltose, and lactose underwent cross-coupling reactions with functionalized aryldiazonium salts in the presence of copper(I) chloride and DBU. The desired products were obtained in 55-88% yields within 5 min. Various functional groups, including halogens, were tolerated under standard reaction conditions. Synthesis of the biologically relevant antidiabetic dapagliflozin S-analogue and arbutin S-analogues (tyrosinase inhibitors) was demonstrated.
Collapse
Affiliation(s)
- Rapelly Venkatesh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Varsha Tiwari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Jeyakumar Kandasamy
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
3
|
Zhu J, Cai T, Zhou J, Du W, Zeng Y, Liu T, Fu Y, Li Y, Qian Q, Yang XH, Li Q, Huang JA, Liu Z. CD151 drives cancer progression depending on integrin α3β1 through EGFR signaling in non-small cell lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:192. [PMID: 34108040 PMCID: PMC8191020 DOI: 10.1186/s13046-021-01998-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/28/2021] [Indexed: 01/07/2023]
Abstract
Background Tetraspanins CD151, a transmembrane 4 superfamily protein, has been identified participating in the initiation of a variety of cancers. However, the precise function of CD151 in non-small cell lung cancer (NSCLC) remains unclear. Here, we addressed the pro-tumoral role of CD151 in NSCLC by targeting EGFR/ErbB2 which favors tumor proliferation, migration and invasion. Methods First, the mRNA expression levels of CD151 in NSCLC tissues and cell lines were measured by RT-PCR. Meanwhile, CD151 and its associated proteins were analyzed by western blotting. The expression levels of CD151 in NSCLC samples and its paired adjacent lung tissues were then verified by Immunohistochemistry. The protein interactions are evaluated by co-immunoprecipitation. Flow cytometry was applied to cell cycle analysis. CCK-8, EdU Incorporation, and clonogenic assays were used to analyze cell viability. Wound healing, transwell migration, and matrigel invasion assays were utilized to assess the motility of tumor cells. To investigate the role of CD151 in vivo, lung carcinoma xenograft mouse model was applied. Results High CD151 expression was identified in NSCLC tissues and cell lines, and its high expression was significantly associated with poor prognosis of NSCLC patients. Further, knockdown of CD151 in vitro inhibited tumor proliferation, migration, and invasion. Besides, inoculation of nude mice with CD151-overexpressing tumor cells exhibited substantial tumor proliferation compared to that in control mice which inoculated with vector-transfected tumor cells. Noteworthy, we found that overexpression of CD151 conferred cell migration and invasion by interacting with integrins. We next sought to demonstrate that CD151 regulated downstream signaling pathways via activation of EGFR/ErbB2 in NSCLC cells. Therefore, we infer that CD151 probably affects the sensitivity of NSCLC in response to anti-cancer drugs. Conclusions Based on these results, we demonstrated a new mechanism of CD151-mediated tumor progression by targeting EGFR/ErbB2 signaling pathway, by which CD151 promotes NSCLC proliferation, migration, and invasion, which may considered as a potential target of NSCLC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01998-4.
Collapse
Affiliation(s)
- Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, 215006, Suzhou, China
| | - Tingting Cai
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China
| | - Jieqi Zhou
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China
| | - Wenwen Du
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China
| | - Yuanyuan Zeng
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, 215006, Suzhou, China
| | - Ting Liu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China
| | - Yulong Fu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China
| | - Yue Li
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China
| | - Qian Qian
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver, 80206, USA
| | - Xiuwei H Yang
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Qinglin Li
- Department of Traditional Chinese Medicine, Cancer Hospital of the University of Chinese Academy of Sciences, 310022, Hangzhou, People's Republic of China.
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China. .,Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China. .,Suzhou Key Laboratory for Respiratory Diseases, 215006, Suzhou, China.
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China. .,Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China. .,Suzhou Key Laboratory for Respiratory Diseases, 215006, Suzhou, China.
| |
Collapse
|