1
|
Gu W, Gu L, Tao N, Wang X, Xu C. Composite Fish Collagen Peptide-Based Biopolymer Emulsion for Keratin Structure Stabilization and Hair Fiber Repair. Polymers (Basel) 2025; 17:907. [PMID: 40219297 PMCID: PMC11991457 DOI: 10.3390/polym17070907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Marine-derived proteins, rich in amino acids and bioactivity, serve as a natural and safe alternative to chemical haircare products. This study selected three highly bioactive fish-derived protein peptides and determined their optimal repair ratio using FTIR structural analysis and response surface methodology (RSM). A collagen peptide-based composite human hair repair emulsion (CHFRE) was formulated, and its repair efficacy on damaged hair (DH) was evaluated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and amino acid analysis. Following CHFRE treatment, the physical and chemical properties of damaged hair improved significantly. SEM analysis revealed enhanced hair luster, aligned cuticle scales, and a denser cortex. FTIR and DSC analyses showed a 5.94% increase in α-conformation content and a 28.44% rise in relative helical content (RHC), indicating enhanced protein stability and a conformation closer to that of normal hair. Additionally, the 14.63% increase in S=O transmittance suggested reduced oxidative damage. Amino acid analysis and hydrophobic amino acids, with specific increments of 16.77 g/100 g and 2.47 g/100 g, respectively, enhance hair affinity and keratin stability. This bio-based repair material effectively restores damaged hair structure, strengthens resistance to chemical damage, and ensures sustainability, safety, and biocompatibility, providing a promising approach for the development of natural hair repair products.
Collapse
Affiliation(s)
- Wenwei Gu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (W.G.); (L.G.); (N.T.); (X.W.)
| | - Lei Gu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (W.G.); (L.G.); (N.T.); (X.W.)
| | - Ningping Tao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (W.G.); (L.G.); (N.T.); (X.W.)
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai 201306, China
| | - Xichang Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (W.G.); (L.G.); (N.T.); (X.W.)
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai 201306, China
| | - Changhua Xu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (W.G.); (L.G.); (N.T.); (X.W.)
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai 201306, China
| |
Collapse
|
2
|
Muhammad AM, Ismail A, Chong PP, Yap WH, Muhamad A, Alitheen NB, Kam A, Loo S, Lee KW. Skin-penetrating peptides (SKPs): Enhancing skin permeation for transdermal delivery of pharmaceuticals and cosmetic compounds. Int J Pharm 2025; 672:125339. [PMID: 39947363 DOI: 10.1016/j.ijpharm.2025.125339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/16/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Skin-penetrating peptides (SKPs) are emerging as a promising class of permeation enhancers that can facilitate macromolecule delivery across the skin. Although their pharmaceutical applications are under extensive study, SKPs are crucial for enhancing skin permeability, enabling larger molecules to penetrate the stratum corneum. This review explores the transformative role of SKPs in non-invasive transdermal drug delivery. Drawing from an extensive collection of literature, it provides insights into the current usage and application of SKPs as tools to enhance skin permeability and facilitate the delivery of larger molecules. Additionally, it highlights the opportunities, challenges, and future directions for SKP applications in transdermal drug delivery.
Collapse
Affiliation(s)
- Ameerah Montree Muhammad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Alif Ismail
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia; Food Security and Nutrition Impact Lab, Taylor's University, Subang Jaya 47500 Selangor, Malaysia
| | - Azira Muhamad
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia Kajang Selangor Malaysia
| | - Noorjahan Banu Alitheen
- Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Antony Kam
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Shining Loo
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Khai Wooi Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
3
|
de Mello L, Castelletto V, Cavalcanti L, Seitsonen J, Hamley I. Self-Assembly of a Conjugate of Lipoic Acid With a Collagen-Stimulating Pentapeptide Showing Cytocompatibility and Wound Healing Properties, and Chemical and Photolytic Disassembly. J Pept Sci 2025; 31:e70002. [PMID: 39904960 PMCID: PMC11794677 DOI: 10.1002/psc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
Lipoic acid is a biocompatible compound with antioxidant activity that is of considerable interest in cosmetic formulations, and the disulfide group in the N-terminal ring confers redox activity. Here, we study the self-assembly and aspects of the bioactivity of a lipopeptide (peptide amphiphile) comprising the KTTKS collagen-stimulating pentapeptide sequence conjugated to an N-terminal lipoic acid chain, lipoyl-KTTKS. Using SAXS, SANS and cryo-TEM, lipoyl-KTTKS is found to form a population of curly fibrils (wormlike micelles) above a critical aggregation concentration. Upon chemical reduction, the fibrils (and β-sheet structure) are disrupted because of the breaking of the disulfide bond, which produces dihydrolipoic acid. Lipoyl-KTTKS also undergoes photo-degradation in the presence of UV radiation. Through cell assays using fibroblasts, we found that lipoyl-KTTKS has excellent cytocompatibility across a wide concentration range, stimulates collagen production, and enhances the rate of cell coverage in a simple in vitro scratch assay of 'wound healing'. Lipoyl-KTTKS thus has several notable properties that may be useful for the development of cosmetics, cell scaffolds or tissue engineering materials.
Collapse
Affiliation(s)
- Lucas R. de Mello
- School of Chemistry, Food Biosciences and PharmacyUniversity of Reading, WhiteknightsReadingUK
| | - Valeria Castelletto
- School of Chemistry, Food Biosciences and PharmacyUniversity of Reading, WhiteknightsReadingUK
| | - Leide Cavalcanti
- ISIS Neutron & Muon Source, Science and Technology Facilities CouncilRutherford Appleton LaboratoryHarwellUK
| | | | - Ian W. Hamley
- School of Chemistry, Food Biosciences and PharmacyUniversity of Reading, WhiteknightsReadingUK
| |
Collapse
|
4
|
Putri SA, Maharani R, Maksum IP, Siahaan TJ. Peptide Design for Enhanced Anti-Melanogenesis: Optimizing Molecular Weight, Polarity, and Cyclization. Drug Des Devel Ther 2025; 19:645-670. [PMID: 39896936 PMCID: PMC11784279 DOI: 10.2147/dddt.s500004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025] Open
Abstract
Melanogenesis is a biochemical process that regulates skin pigmentation, which is crucial role in protecting against ultraviolet radiation. It is also associated with hyperpigmentation conditions such as melasma and age spots, which negatively impact aesthetics and self-confidence. Tyrosinase (TYR), a key enzyme in the melanogenesis pathway, catalyzes the biosynthesis of melanin in the skin. Inhibition of tyrosinase particularly by blocking its active site and preventing the binding of natural substrates such as tyrosine, can reduce melanin production, making it a promising therapeutic target for treating hyperpigmentation. Peptides have emerged as promising therapeutics to regulate melanogenesis by minimizing the side effects associated with conventional skin whitening therapeutics. This review is designed to offer a comprehensive analysis of current strategies in peptide design aimed at optimizing anti-melanogenic activity, by focusing on the role of molecular weight, polarity, and cyclization strategies in enhancing peptide efficacy and stability. It was found that optimal peptide size was within the range of 400-600 Da. The balance between hydrophilic and hydrophobic properties in peptides is crucial for effective TYR inhibition, as higher hydrophilicity enhances affinity for the TYR active site and stronger catalytic inhibition, while hydrophobicity can contribute through alternative mechanisms. Cyclization of peptides enhances their structural stability, serum resistance, and binding affinity while reducing toxicity. This process increases resistance to enzymatic degradation and improves target specificity by limiting conformational flexibility. Additionally, the rigidity and internal hydrogen bonding of cyclic peptides can aid in membrane permeability, making them more effective for therapeutic use. Peptide optimizations through size modification, polarity change, and cyclization strategies have been shown to be promising as reliable and safe agents for melanin inhibition. Future studies exploring specific amino acid in peptide chains are required to improve efficacy and potential clinical applications of these anti-melanogenic peptides as a hyperpigmentation treatment.
Collapse
Affiliation(s)
- Selvi Apriliana Putri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung, 40173, Indonesia
| | - Rani Maharani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung, 40173, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung, 40173, Indonesia
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| |
Collapse
|
5
|
Adak A, Castelletto V, Hamley IW, Seitsonen J, Jana A, Ghosh S, Mukherjee N, Ghosh S. Self-Assembly and Wound Healing Activity of Biomimetic Cycloalkane-Based Lipopeptides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58417-58426. [PMID: 39422705 PMCID: PMC11533170 DOI: 10.1021/acsami.4c14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
The self-assembly of lipopeptide (peptide amphiphile) molecules bearing single linear lipid chains has been widely studied, as has their diverse range of bioactivities. Here, we introduce lipopeptides bearing one or two cycloalkane chains (cycloheptadecyl or cyclododecyl) conjugated to the collagen-stimulating pentapeptide KTTKS used in Matrixyl formulations. The self-assembly of all four molecules is probed using fluorescence probe measurements to detect the critical aggregation concentration (CAC), and cryogenic-TEM and small-angle X-ray scattering (SAXS) to image the nanostructure. The peptide conformation is studied using circular dichroism (CD) and FTIR spectroscopies. All the cycloalkane lipopeptides show excellent compatibility with dermal fibroblasts. The compounds bearing one or two cyclododecyl chains (denoted as DKT and DDKT, respectively) show wound healing in diabetic rats, the improvement being markedly enhanced for DDKT. Interestingly, the revival of hair follicles and blood vessels in the dermis were observed, which are the critical markers of effective wound repair. Analysis of H&E-stained tissue images (from a rat model) shows that the rat groups treated with DDKT and DKT displayed a significantly increased amount of regenerated hair follicles, indicating a faster healing process for DDKT compared to the control group. Collagen deposition was also enhanced, especially for DDKT, and by day 20, the DDKT-treated groups had developed a dense collagen network accompanied by a regenerated epidermis. At the same time, the number of blood vessels in DDKT-treated diabetic wounds was significantly higher than in control groups and neovascularization was substantially enhanced, as assayed using α-SMA (a marker for vascular smooth muscle cells) and CD31 (a marker specific to vascular endothelial cells). These results suggest that the lead lipopeptide DDKT exhibits a remarkable pro-vascularization capability and shows great promise for future application as a wound-healing biomaterial.
Collapse
Affiliation(s)
- Anindyasundar Adak
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Valeria Castelletto
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Ian W. Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Aniket Jana
- Smart
Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Smart
Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Nabanita Mukherjee
- Smart
Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Smart
Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
6
|
Liu Z, Zhao N, Liang L, Li M, Nie X, Wang Y, Liu Q, Zhou Q, Shu P. Evaluation of the anti-aging potential of acetyl tripeptide-30 citrulline in cosmetics. Int J Pharm 2024; 663:124557. [PMID: 39103061 DOI: 10.1016/j.ijpharm.2024.124557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Acetyl tripeptide-30 citrulline, a commercialized bio-active peptide, is widely used in anti-wrinkle formulations. Volunteer-based tests have demonstrated that topical application of products containing acetyl tripeptide-30 citrulline significantly reduces the visibility of stretch marks. However, there is still a lack of research dedicated to systematically and holistically evaluating its cosmetic properties and elucidating its mechanisms of action. In this study, we assessed the cosmetic potential of acetyl tripeptide-30 citrulline using human immortalized keratinocytes (HaCaT) and mouse embryonic fibroblasts (3T3). Our findings reveal that acetyl tripeptide-30 citrulline exhibits anti-inflammatory and antioxidant activities in skin cells, particularly effective against the inflammatory markers cyclooxygenase-2 (COX2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), and the extent of inhibition of reactive oxygen species (ROS) production ranged from 95 % to 340 %. Moreover, acetyl tripeptide-30 citrulline specifically up-regulates Collagen IV and down-regulates matrix metalloproteinase-9 (MMP9), enhances the expression of skin barrier proteins transglutaminase 1 (TGM1) and filaggrin (FLG), thereby demonstrating its reparative capabilities. Additionally, acetyl tripeptide-30 citrulline increases the expression of the water channel protein aquaporin 3 (AQP3), thus improving skin hydration function. These results substantiate the previously proclaimed cosmetic attributes of acetyl tripeptide-30 citrulline and support its efficacy as an anti-aging agent in dermatological applications.
Collapse
Affiliation(s)
- Zhao Liu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong 518000, P.R. China.
| | - Nan Zhao
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong 518000, P.R. China
| | - Ling Liang
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong 518000, P.R. China
| | - Menggeng Li
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong 518000, P.R. China
| | - Xin Nie
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong 518000, P.R. China
| | - Yuan Wang
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong 518000, P.R. China
| | - Qin Liu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong 518000, P.R. China
| | - Qi Zhou
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong 518000, P.R. China
| | - Peng Shu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong 518000, P.R. China.
| |
Collapse
|
7
|
Rama GR, Saraiva Macedo Timmers LF, Volken de Souza CF. In Silico Strategies to Predict Anti-aging Features of Whey Peptides. Mol Biotechnol 2024; 66:2426-2440. [PMID: 37737930 DOI: 10.1007/s12033-023-00887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
We have analysed the in silico potential of bioactive peptides from cheese whey, the most relevant by-product from the dairy industry, to bind into the active site of collagenase and elastase. The peptides generated from the hydrolysis of bovine β-lactoglobulin with three proteases (trypsin, chymotrypsin, and subtilisin) were docked onto collagenase and elastase by molecular docking. The interaction models were ranked according to their free binding energy using molecular dynamics simulations, which showed that most complexes presented favourable interactions. Interactions with elastase had significantly lower binding energies than those with collagenase. Regarding the interaction site, it was found that four bioactive peptides were positioned in collagenase's active site, while six were found in elastase's active site. Among these, the most we have found one promising collagen-binding peptide produced by chymotrypsin and two for elastase, produced by subtilisin and chymotrypsin. These in silico results can be used as a tool for designing further experiments aiming at testing the in vitro potential of the peptides found in this work.
Collapse
Affiliation(s)
- Gabriela Rabaioli Rama
- Graduate Program in Biotechnology, University of Vale do Taquari-Univates, Av. Avelino Tallini, 171, Lajeado, RS, 95914-014, Brazil
| | | | - Claucia Fernanda Volken de Souza
- Graduate Program in Biotechnology, University of Vale do Taquari-Univates, Av. Avelino Tallini, 171, Lajeado, RS, 95914-014, Brazil.
| |
Collapse
|
8
|
Jiao S, Ye X, Sakurai T, Zou Q, Liu R. Integrated convolution and self-attention for improving peptide toxicity prediction. Bioinformatics 2024; 40:btae297. [PMID: 38696758 PMCID: PMC11654579 DOI: 10.1093/bioinformatics/btae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 05/04/2024] Open
Abstract
MOTIVATION Peptides are promising agents for the treatment of a variety of diseases due to their specificity and efficacy. However, the development of peptide-based drugs is often hindered by the potential toxicity of peptides, which poses a significant barrier to their clinical application. Traditional experimental methods for evaluating peptide toxicity are time-consuming and costly, making the development process inefficient. Therefore, there is an urgent need for computational tools specifically designed to predict peptide toxicity accurately and rapidly, facilitating the identification of safe peptide candidates for drug development. RESULTS We provide here a novel computational approach, CAPTP, which leverages the power of convolutional and self-attention to enhance the prediction of peptide toxicity from amino acid sequences. CAPTP demonstrates outstanding performance, achieving a Matthews correlation coefficient of approximately 0.82 in both cross-validation settings and on independent test datasets. This performance surpasses that of existing state-of-the-art peptide toxicity predictors. Importantly, CAPTP maintains its robustness and generalizability even when dealing with data imbalances. Further analysis by CAPTP reveals that certain sequential patterns, particularly in the head and central regions of peptides, are crucial in determining their toxicity. This insight can significantly inform and guide the design of safer peptide drugs. AVAILABILITY AND IMPLEMENTATION The source code for CAPTP is freely available at https://github.com/jiaoshihu/CAPTP.
Collapse
Affiliation(s)
- Shihu Jiao
- Department of Computer Science, University of Tsukuba,
Tsukuba 3058577, Japan
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba,
Tsukuba 3058577, Japan
| | - Tetsuya Sakurai
- Department of Computer Science, University of Tsukuba,
Tsukuba 3058577, Japan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic
Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science
and Technology of China, Quzhou 324000, China
| | - Ruijun Liu
- School of Software, Beihang University, Beijing 100191,
China
| |
Collapse
|
9
|
Echavarría JAC, El Hajj S, Irankunda R, Selmeczi K, Paris C, Udenigwe CC, Canabady-Rochelle L. Screening, separation and identification of metal-chelating peptides for nutritional, cosmetics and pharmaceutical applications. Food Funct 2024; 15:3300-3326. [PMID: 38488016 DOI: 10.1039/d3fo05765h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Metal-chelating peptides, which form metal-peptide coordination complexes with various metal ions, can be used as biofunctional ingredients notably to enhance human health and prevent diseases. This review aims to discuss recent insights into food-derived metal-chelating peptides, the strategies set up for their discovery, their study, and identification. After understanding the overall properties of metal-chelating peptides, their production from food-derived protein sources and their potential applications will be discussed, particularly in nutritional, cosmetics and pharmaceutical fields. In addition, the review provides an overview of the last decades of progress in discovering food-derived metal-chelating peptides, addressing several screening, separation and identification methodologies. Furthermore, it emphasizes the methods used to assess peptide-metal interaction, allowing for better understanding of chemical and thermodynamic parameters associated with the formation of peptide-metal coordination complexes, as well as the specific amino acid residues that play important roles in the metal ion coordination.
Collapse
Affiliation(s)
| | - Sarah El Hajj
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | | | | | - Cédric Paris
- Université de Lorraine, LIBIO, F-54000 Nancy, France
| | - Chibuike C Udenigwe
- School of Nutrition Science, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | |
Collapse
|
10
|
Crous C, Pretorius J, Petzer A. Overview of popular cosmeceuticals in dermatology. SKIN HEALTH AND DISEASE 2024; 4:e340. [PMID: 38577050 PMCID: PMC10988741 DOI: 10.1002/ski2.340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 01/18/2024] [Indexed: 04/06/2024]
Abstract
The eternal pursuit to prevent ageing and maintain a youthful appearance has resulted in a rapidly expanding cosmeceutical industry. Cosmeceutical products, particularly of natural origin, are in high demand due to claims of efficacy for signs of ageing and other skin conditions. Consumers often include cosmeceutical products in their skin care regime as they are readily available, and a more affordable option compared to prescription products. However, many cosmeceutical ingredients lack clinical evidence regarding their efficacy and safety as these products are not regulated by the U.S. Food and Drug Administration. This review provides a brief overview of several popular cosmeceutical ingredients with regards to their potential indications, targets and mechanisms of action.
Collapse
Affiliation(s)
- Chantalle Crous
- Pharmaceutical ChemistrySchool of Pharmacy and Centre of Excellence for Pharmaceutical SciencesNorth‐West UniversityPotchefstroomSouth Africa
| | | | - Anél Petzer
- Pharmaceutical ChemistrySchool of Pharmacy and Centre of Excellence for Pharmaceutical SciencesNorth‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
11
|
Errante F, Pallecchi M, Bartolucci G, Frediani E, Margheri F, Giovannelli L, Papini AM, Rovero P. Retro-Inverso Collagen Modulator Peptide Derived from Serpin A1 with Enhanced Stability and Activity In Vitro. J Med Chem 2024; 67:5053-5063. [PMID: 38470817 DOI: 10.1021/acs.jmedchem.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The rising demand for novel cosmeceutical ingredients has highlighted peptides as a significant category. Based on the collagen turnover modulation properties of SA1-III, a decapeptide derived from a serine protease inhibitor (serpin A1), this study focused on designing shorter, second-generation peptides endowed with improved properties. A tetrapeptide candidate was further modified employing the retro-inverso approach that uses d-amino acids aiming to enhance peptide stability against dermal enzymes. Surprisingly, the modified peptide AAT11RI displayed notably high activity in vitro, as compared to its precursors, and suggested a mode of action based on the inhibition of collagen degradation. It is worth noting that AAT11RI showcases stability against dermal enzymes contained in human skin homogenates due to its rationally designed structure that hampers recognition by most proteases. The rational approach we embraced in this study underscored the added value of substantiated claims in the design of new cosmeceutical ingredients, representing a rarity in the field.
Collapse
Affiliation(s)
- Fosca Errante
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, FI 50019, Italy
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
- Espikem s.r.l., Prato, PO 59100, Italy
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Elena Frediani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, FI 50139, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, FI 50139, Italy
| | - Lisa Giovannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Firenze, FI 50139, Italy
| | - Anna M Papini
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Paolo Rovero
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, FI 50019, Italy
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
12
|
Lee EJ, Kim MW, Gil HN, Chung YJ, Kim EM. In vitro hair growth-promoting effect of Lgr5-binding octapeptide in human primary hair cells. J Cosmet Dermatol 2024; 23:986-998. [PMID: 37905348 DOI: 10.1111/jocd.16036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Hair loss occurs due to various biological and environmental causes, which can have psychosocial consequences. The Wnt/β-catenin signaling is well-known for its role in hair growth and regeneration, as it induces the proliferation and differentiation of hair cells. When the leucine-rich G protein-coupled receptor 5 (Lgr5) interacts with the R-spondins, the frizzled receptor (FZD), a Wnt receptor, becomes stabilized, resulting in an increased β-catenin activity. AIM We investigated whether the octapeptide that binds to Lgr5 enhances proliferation and differentiation of human primary hair cells through the activation of Wnt/β-catenin signaling. METHODS The binding affinity of the octapeptide to Lgr5 was evaluated using surface plasmon resonance (SPR). We confirmed changes in proliferation and related factors like β-catenin activation and growth factors (GFs) expression in human hair follicle dermal papilla cells (HHFDPCs). Additionally, we observed the proliferation and the expression of differentiation markers in human hair follicle outer root sheath cells (HHFORSCs), human hair follicle germinal matrix cells (HHFGMCs), and human hair follicle stem cells (HHFSCs). We used three-dimensional HHFDPC spheroid culture treated with dihydrotestosterone (DHT) to create in vitro conditions that mimic androgenetic alopecia, and we studied the effects of octapeptide on Wnt expression and HHFSC differentiation. RESULTS The binding of the octapeptide to Lgr5 was confirmed using SPR analysis. In HHFDPCs, treatment with octapeptide resulted in a concentration-dependent increase in proliferation. We also observed increased nuclear translocation of β-catenin and increased expression of its downstream targets. HHFDPCs treated with octapeptide exhibited increased expression of growth factors and phosphorylation of Akt and ERK. In addition, we confirmed that octapeptide increased proliferation and induced differentiation in HHFORSCs, HHFGMCs, and HHFSCs. Under the HHFDPC spheroid culture conditions, we found that octapeptide restored the inhibition of Wnt-5a and Wnt-10b expressions by DHT. In HHFSCs treated with HHFDPC spheroid culture media, we observed that octapeptide recovered the inhibition of differentiation by DHT. CONCLUSION We found that octapeptides activated the Wnt/β-catenin signaling and induced the proliferation and differentiation of human primary hair cells by acting as an exogenous ligand for Lgr5. In addition, octapeptides recovered inhibited hair regeneration characters by DHT in androgenetic alopecia-mimic in vitro model. These findings suggest that octapeptides may be a promising therapeutic option for treating hair loss.
Collapse
Affiliation(s)
| | | | - Ha-Na Gil
- Caregen R&D center, Anyang-si, Korea
| | | | | |
Collapse
|
13
|
Wyrzykowski D, Wieczorek R, Kloska A, Errante F, Papini AM, Makowska J. Influence of the modification of the cosmetic peptide Argireline on the affinity toward copper(II) ions. J Pept Sci 2024; 30:e3547. [PMID: 37752675 DOI: 10.1002/psc.3547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Argireline (Ac-EEMQRR-NH2 ), a well-known neurotransmitter peptide with a potency similar to botulinum neurotoxins, reveals a proven affinity toward Cu(II) ions. We report herein Cu(II) chelating properties of three new Argireline derivatives, namely, AN4 (Ac-EAHRR-NH2 ), AN5 (Ac-EEHQRR-NH2 ), and AN6 (Ac-EAHQRK-NH2 ). Two complementary experimental techniques, i.e., potentiometric titration (PT) and isothermal titration calorimetry (ITC), have been employed to describe the acid-base properties of the investigated peptides as well as the thermodynamic parameters of the Cu(II) complex formation. Additionally, based on density functional theory (DFT) calculations, we propose the most likely structures of the resulting Cu-peptide complexes. Finally, the cytotoxicity of the free peptides and the corresponding Cu(II) complexes was estimated in human skin cells for their possible future cosmetic application. The biological results were subsequently compared with free Argireline, its Cu(II)-complexes, and the previously studied AN2 derivative (EAHQRR).
Collapse
Affiliation(s)
| | | | - Anna Kloska
- Faculty of Biology, Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| | - Fosca Errante
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurofarba, University of Florence, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | | |
Collapse
|
14
|
Ledwoń P, Goldeman W, Hałdys K, Jewgiński M, Calamai G, Rossowska J, Papini AM, Rovero P, Latajka R. Tripeptides conjugated with thiosemicarbazones: new inhibitors of tyrosinase for cosmeceutical use. J Enzyme Inhib Med Chem 2023; 38:2193676. [PMID: 37146256 PMCID: PMC10165932 DOI: 10.1080/14756366.2023.2193676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
The development of skin-care products is recently growing. Cosmetic formulas containing active ingredients with proven efficacy, namely cosmeceuticals, are based on various compounds, including peptides. Different whitening agents featuring anti-tyrosinase activity have been applied in the cosmeceutical field. Despite their availability, their applicability is often limited due to several drawbacks including toxicity, lack of stability, and other factors. In this work, we present the inhibitory effect on diphenolase activity of thiosemicarbazone (TSC)-peptide conjugates. Tripeptides FFY, FWY, and FYY were conjugated with three TSCs bearing one or two aromatic rings via amide bond formation in a solid phase. Compounds were then examined as tyrosinase and melanogenesis inhibitors in murine melanoma B16F0 cell line, followed by the cytotoxicity assays of these cells. In silico investigations explained the differences in the activity, observed among tested compounds. Mushroom tyrosinase was inhibited by TSC1-conjugates at micromolar level, with IC50 lower than this for kojic acid, a widely used reference compound. Up to now, this is the first report regarding thiosemicarbazones conjugated with tripeptides, synthesised for the purpose of tyrosinase inhibition.
Collapse
Affiliation(s)
- Patrycja Ledwoń
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Waldemar Goldeman
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Katarzyna Hałdys
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Michał Jewgiński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Greta Calamai
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Wrocław, Poland
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Rafał Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| |
Collapse
|
15
|
Tosto R, Vecchio G, Bellia F. New Biotinylated GHK and Related Copper(II) Complex: Antioxidant and Antiglycant Properties In Vitro against Neurodegenerative Disorders. Molecules 2023; 28:6724. [PMID: 37764500 PMCID: PMC10538196 DOI: 10.3390/molecules28186724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide. The failure of the enzymatic degradation, the oxidative stress, the dyshomeostasis of metal ions, among many other biochemical events, might trigger the pathological route, but the onset of these pathologies is unknown. Multi-target and multifunctional molecules could address several biomolecular issues of the pathologies. The tripeptide GHK, a bioactive fragment of several proteins, and the related copper(II) complex have been largely used for many purposes, from cosmetic to therapeutic applications. GHK derivatives were synthesized to increase the peptide stability and improve the target delivery. Herein we report the synthesis of a new biotin-GHK conjugate (BioGHK) through orthogonal reactions. BioGHK is still capable of coordinating copper(II), as observed by spectroscopic and spectrometric measurements. The spectroscopic monitoring of the copper-induced ascorbate oxidation was used to measure the antioxidant activity Cu(II)-BioGHK complex, whereas antiglycant activity of the ligand towards harmful reactive species was investigated using MALDI-TOF. The affinity of BioGHK for streptavidin was evaluated using a spectrophotometric assay and compared to that of biotin. Finally, the antiaggregant activity towards amyloid-β was evaluated using a turn-on fluorescent dye. BioGHK could treat and/or prevent several adverse biochemical reactions that characterize neurodegenerative disorders, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Rita Tosto
- Institute of Crystallography, National Research Council of Italy (CNR), P. Gaifami 18, 95126 Catania, Italy;
| | - Graziella Vecchio
- Department of Chemical Sciences, University of Catania, A. Doria 6, 95125 Catania, Italy;
| | - Francesco Bellia
- Institute of Crystallography, National Research Council of Italy (CNR), P. Gaifami 18, 95126 Catania, Italy;
| |
Collapse
|
16
|
Rovero P, Malgapo DMH, Sparavigna A, Beilin G, Wong V, Lao MP. The Clinical Evidence-Based Paradigm of Topical Anti-Aging Skincare Formulations Enriched with Bio-Active Peptide SA1-III (KP1) as Collagen Modulator: From Bench to Bedside. Clin Cosmet Investig Dermatol 2022; 15:2693-2703. [PMID: 36540724 PMCID: PMC9760069 DOI: 10.2147/ccid.s374295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/14/2022] [Indexed: 07/25/2023]
Abstract
A substantial reduction in the amount and quality of collagen leads to age-related deterioration of the elasticity and firmness of the skin. In recent years, multiple compounds have been developed aimed at reversing the molecular features of dermal aging. One such target for aging reversal is collagen degradation or turnover. SA1-III is a decapeptide (Ac-Met-Gly-Lys-Val-Val-Asn-Pro-Thr-Gln-Lys-NH2), also known as KP1, formally derived from the C-terminal portion of serpin A1, an agent known as a physiological inhibitor of neutrophil elastase, and has been the subject of laboratory and clinical studies determining its effects on modulation of collagen turnover as well as the treatment of age-associated changes of the face. This review aims to provide a bio-inspired approach focusing on the latest scientific studies that describe the compound, as well as a comprehensive appraisal of laboratory and clinical tests on skincare formulations enriched with sA1-III.
Collapse
Affiliation(s)
- Paolo Rovero
- Department of Neurofarba, Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Florence, Italy
| | | | - Adele Sparavigna
- DERMING S.r.l., Clinical Research and Bioengineering Institute, Milan, Italy
| | | | | | - Ma Purita Lao
- Department of Dermatology, Makati Medical Center, Makati City, Metro Manila, Philippines
| |
Collapse
|
17
|
Isaeva VA, Molchanov AS, Shishkin MV, Sharnin VA. Stability of Cobalt(II) Complexes with Glycinate Ion as a Function of Water–Dimethyl Sulfoxide Solvent Composition. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622050084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Lee WR, Hsiao CY, Chang ZY, Wang PW, Aljuffali IA, Lin JY, Fang JY. Cutaneous Delivery of Cosmeceutical Peptides Enhanced by Picosecond- and Nanosecond-Domain Nd:YAG Lasers with Quick Recovery of the Skin Barrier Function: Comparison with Microsecond-Domain Ablative Lasers. Pharmaceutics 2022; 14:pharmaceutics14020450. [PMID: 35214181 PMCID: PMC8880571 DOI: 10.3390/pharmaceutics14020450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
Picosecond or nanosecond-domain non-ablative lasers generate faster photothermal effects and cause less injury than microsecond lasers. In this study, we investigated the enhancing effect of 1064 nm picosecond- and nanosecond-domain neodymium (Nd):yttrium–aluminum–garnet (YAG) lasers on the cutaneous delivery of cosmeceutical peptides. Microsecond-domain fractional ablative CO2 and fully ablative erbium (Er):YAG lasers were also used for comparison. In the Franz diffusion cell study, pig or mouse skin was treated with a laser before exposure to palmitoyl tripeptide (PT)-1, PT-38, and copper tripeptide (CT)-1 at a concentration of 150 μM. Psoriasiform, atopic dermatitis (AD)-like, and photoaged skins were also developed as permeation barriers. The non-ablative laser elicited the ultrastructural disruption of the stratum corneum and epidermal vacuolation. All laser modalities significantly increased the skin permeation of peptides in vitro. The non-ablative laser chiefly enhanced peptide delivery to the receptor compartment, whereas the ablative laser mainly increased the intracutaneous peptide deposition. The picosecond- and nanosecond-domain Nd:YAG lasers elevated the amount of PT-1 in the receptor up to 40- and 22-fold compared with untreated skin, respectively. Laser treatment promoted peptide delivery in barrier-deficient and inflamed skins, although this enhancement effect was less than that observed in healthy skin. Fluorescence microscopy indicated the capability of the non-ablative laser to deliver peptides to deeper skin strata. The ablative laser confined the peptide distribution in the epidermis. Confocal microscopy showed that peptides penetrated the skin along the microdots created by the fractional Nd:YAG and CO2 lasers. The skin barrier function determined by transepidermal water loss suggested quick recovery when using a nanosecond-domain laser (within 4 h). A longer period was needed for the skin treated with the fully ablative Er:YAG laser (76–84 h). Nanosecond non-ablative laser-facilitated peptide delivery may become an efficient and safe approach for cosmeceutical applications.
Collapse
Affiliation(s)
- Woan-Ruoh Lee
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110, Taiwan;
- Department of Dermatology, Taipei Medical University Shuang Ho Hospital, New Taipei City 234, Taiwan
| | - Chien-Yu Hsiao
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan;
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan
| | - Zi-Yu Chang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan;
| | - Ibrahim A. Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia;
| | - Jie-Yu Lin
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan 333, Taiwan;
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan 333, Taiwan;
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan
- Correspondence:
| |
Collapse
|
19
|
Zaky AA, Simal-Gandara J, Eun JB, Shim JH, Abd El-Aty AM. Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides From Food and By-Products: A Review. Front Nutr 2022; 8:815640. [PMID: 35127796 PMCID: PMC8810531 DOI: 10.3389/fnut.2021.815640] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Bioactive peptides generated from food proteins have great potential as functional foods and nutraceuticals. Bioactive peptides possess several significant functions, such as antioxidative, anti-inflammatory, anticancer, antimicrobial, immunomodulatory, and antihypertensive effects in the living body. In recent years, numerous reports have been published describing bioactive peptides/hydrolysates produced from various food sources. Herein, we reviewed the bioactive peptides or protein hydrolysates found in the plant, animal, marine, and dairy products, as well as their by-products. This review also emphasizes the health benefits, bioactivities, and utilization of active peptides obtained from the mentioned sources. Their possible application in functional product development, feed, wound healing, pharmaceutical and cosmetic industries, and their use as food additives have all been investigated alongside considerations on their safety.
Collapse
Affiliation(s)
- Ahmed A. Zaky
- National Research Centre, Department of Food Technology, Food Industries and Nutrition Research Institute, Cairo, Egypt
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Jong-Bang Eun
- Department of Food Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Biotechnology Research Institute, Chonnam National University, Gwangju, South Korea
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
20
|
Liu M, Chen S, Zhiwen Z, Li H, Sun G, Yin N, Wen J. Anti-ageing peptides and proteins for topical applications: a review. Pharm Dev Technol 2021; 27:108-125. [PMID: 34957891 DOI: 10.1080/10837450.2021.2023569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skin ageing is a cumulative result of oxidative stress, predominantly caused by reactive oxygen species (ROS). Respiration, pollutants, toxins, or ultraviolet A (UVA) irradiation produce ROS with 80% of skin damage attributed to UVA irradiation. Anti-ageing peptides and proteins are considered valuable compounds for removing ROS to prevent skin ageing and maintenance of skin health. In this review, skin ageing theory has been illustrated with a focus on the mechanism and relationship with anti-ageing peptides and proteins. The effects, classification, and transport pathways of anti-ageing peptides and proteins across skin are summarized and discussed. Over the last decade, several novel formulations and advanced strategies have been developed to overcome the challenges in the dermal delivery of proteins and peptides for skin ageing. This article also provides an in-depth review of the latest advancements in the dermal delivery of anti-ageing proteins and peptides. Based on these studies, this review prospected several semi-solid dosage forms to achieve topical applicability for anti-ageing peptides and proteins.
Collapse
Affiliation(s)
- Mengyang Liu
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Zhang Zhiwen
- Shanghai Institute of Materia Medica, Chinese Academy of Science, China
| | - Hongyu Li
- School of Pharmacy, University of Arkansas for Medical Sciences, Arkansas, USA
| | - Guiju Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, China
| | - Naibo Yin
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Neurocosmetics in Skincare—The Fascinating World of Skin–Brain Connection: A Review to Explore Ingredients, Commercial Products for Skin Aging, and Cosmetic Regulation. COSMETICS 2021. [DOI: 10.3390/cosmetics8030066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The “modern” cosmetology industry is focusing on research devoted to discovering novel neurocosmetic functional ingredients that could improve the interactions between the skin and the nervous system. Many cosmetic companies have started to formulate neurocosmetic products that exhibit their activity on the cutaneous nervous system by affecting the skin’s neuromediators through different mechanisms of action. This review aims to clarify the definition of neurocosmetics, and to describe the features of some functional ingredients and products available on the market, with a look at the regulatory aspect. The attention is devoted to neurocosmetic ingredients for combating skin stress, explaining the stress pathways, which are also correlated with skin aging. “Neuro-relaxing” anti-aging ingredients derived from plant extracts and neurocosmetic strategies to combat inflammatory responses related to skin stress are presented. Afterwards, the molecular basis of sensitive skin and the suitable neurocosmetic ingredients to improve this problem are discussed. With the aim of presenting the major application of Botox-like ingredients as the first neurocosmetics on the market, skin aging is also introduced, and its theory is presented. To confirm the efficacy of the cosmetic products on the market, the concept of cosmetic claims is discussed.
Collapse
|
22
|
Peptides and Peptidomimetics as Inhibitors of Enzymes Involved in Fibrillar Collagen Degradation. MATERIALS 2021; 14:ma14123217. [PMID: 34200889 PMCID: PMC8230458 DOI: 10.3390/ma14123217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
Collagen fibres degradation is a complex process involving a variety of enzymes. Fibrillar collagens, namely type I, II, and III, are the most widely spread collagens in human body, e.g., they are responsible for tissue fibrillar structure and skin elasticity. Nevertheless, the hyperactivity of fibrotic process and collagen accumulation results with joints, bone, heart, lungs, kidneys or liver fibroses. Per contra, dysfunctional collagen turnover and its increased degradation leads to wound healing disruption, skin photoaging, and loss of firmness and elasticity. In this review we described the main enzymes participating in collagen degradation pathway, paying particular attention to enzymes degrading fibrillar collagen. Therefore, collagenases (MMP-1, -8, and -13), elastases, and cathepsins, together with their peptide and peptidomimetic inhibitors, are reviewed. This information, related to the design and synthesis of new inhibitors based on peptide structure, can be relevant for future research in the fields of chemistry, biology, medicine, and cosmeceuticals.
Collapse
|
23
|
Staśkiewicz A, Ledwoń P, Rovero P, Papini AM, Latajka R. Triazole-Modified Peptidomimetics: An Opportunity for Drug Discovery and Development. Front Chem 2021; 9:674705. [PMID: 34095086 PMCID: PMC8172596 DOI: 10.3389/fchem.2021.674705] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Peptidomimetics play a fundamental role in drug design due to their preferential properties regarding natural peptides. In particular, compounds possessing nitrogen-containing heterocycles have been intensively studied in recent years. The triazolyl moiety incorporation decreases the molecule susceptibility to enzymatic degradation, reduction, hydrolysis, and oxidation. In fact, peptides containing triazole rings are a typical example of peptidomimetics. They have all the advantages over classic peptides. Both efficient synthetic methods and biological activity make these systems an interesting and promising object of research. Peptide triazole derivatives display a diversity of biological properties and can be obtained via numerous synthetic strategies. In this review, we have highlighted the importance of the triazole-modified peptidomimetics in the field of drug design. We present an overview on new achievements in triazolyl-containing peptidomimetics synthesis and their biological activity as inhibitors of enzymes or against cancer, viruses, bacteria, or fungi. The relevance of above-mentioned compounds was confirmed by their comparison with unmodified peptides.
Collapse
Affiliation(s)
- Agnieszka Staśkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Firenze, Italy
| | - Patrycja Ledwoń
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Firenze, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Firenze, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Firenze, Italy
| | - Rafal Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|