1
|
Fernandes Melo Reis RC, Pontes Silva AV, da Veiga Torres A, de Cassia Alves Iemini R, Lapa IR, Franco LL, Pinto Braga SF, Carvalho DT, Dias DF, de Souza TB. From clove oil to bioactive agents: synthetic routes, antimicrobial and antiparasitic activities of eugenol derivatives. Future Med Chem 2024; 16:2169-2188. [PMID: 39474787 PMCID: PMC11559368 DOI: 10.1080/17568919.2024.2419376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/07/2024] [Indexed: 11/13/2024] Open
Abstract
Eugenol, a natural compound found in essential oils such as clove oil, has been extensively studied for its diverse biological activities including the therapeutic potential against microbial and parasitic infections. This review provides an overview of the synthetic strategies (shown in Supplementary Material) employed to develop bioactive derivatives and analogues derived from eugenol and related compounds (e.g., dihydroeugenol and isoeugenol), focusing on biological activity of more than 100 bioactive eugenol derivatives against bacterial, fungal, viral and protozoal pathogens. Through a comprehensive survey of literature, this paper shows the impact of structural modifications of these phenylpropanoids on antimicrobial and antiparasitic activity. Key findings highlight promising candidates for further development in antimicrobial drug discovery, suggesting directions for future research in the pursuit of effective therapeutic agents.
Collapse
Affiliation(s)
| | | | - Adriana da Veiga Torres
- Institute of Exact & Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG35402-163, Brazil
| | | | - Igor Rodrigues Lapa
- Institute of Chemistry, Federal University of Alfenas, Alfenas, MG37130-001, Brazil
| | - Lucas Lopardi Franco
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG37130-001, Brazil
| | | | - Diogo Teixeira Carvalho
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG37130-001, Brazil
| | | | - Thiago Belarmino de Souza
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, MG35402-163, Brazil
- Institute of Exact & Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG35402-163, Brazil
| |
Collapse
|
2
|
Cardoso Barbosa JR, Queiroz MH, Rivelino R, Oliveira GDAR, Lião LM, Cunha S. Regioselectivity in the Nitration of Eugenol Is Independent of Inorganic Reagents: An Experimental and Theoretical Investigation with Synthetic and Mechanistic Implications. J Org Chem 2023. [PMID: 38153692 DOI: 10.1021/acs.joc.3c02298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
In this study, we reinvestigated the straightforward nitration of eugenol using traditional reagents and bismuth nitrate. NMR analysis of the obtained products revealed that the regioselectivity of eugenol nitration was independent of the inorganic nitrating reagent used, consistently resulting in the formation of 6-nitroeugenol. This contradicts previous literature reports because the elusive synthesis of 5-nitroeugenol using Bi(NO3)3·5H2O was not achievable through straightforward methods; instead, this isomer could only be prepared via the well-established three-step synthesis. Theoretical investigations using DFT calculations, considering both the dielectric constant of the medium and explicit water molecules, substantiated this regioselectivity. It was found that hydration water played a critical role in the formation of a Zundel cation, shifting the thermodynamic equilibrium toward the exclusive production of 6-nitroeugenol. These results imply that all biological studies involving eugenol derivatives synthesized via direct nitration with Bi(NO3)3·5H2O should be reviewed, as they dealt with 6-substituted eugenol derivatives rather than the previously assumed 5-substituted eugenol.
Collapse
Affiliation(s)
| | - Murillo H Queiroz
- Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, Salvador, Bahia 40170-115, Brazil
| | - Roberto Rivelino
- Instituto de Física, Universidade Federal da Bahia, Salvador, Bahia 40210-340, Brazil
| | | | - Luciano Morais Lião
- Laboratório de RMN, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Silvio Cunha
- Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, Salvador, Bahia 40170-115, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT em Energia e Ambiente, Campus Ondina, Salvador, Bahia 40170-290, Brazil
| |
Collapse
|
3
|
Oliveira LM, Siqueira FS, Silva MT, Machado JVC, Cordeiro CF, Diniz LF, Campos MMA, Franco LL, Souza TB, Hawkes JA, Carvalho DT. Synthesis and antimicrobial activity of molecular hybrids based on eugenol and chloramphenicol pharmacophores. Folia Microbiol (Praha) 2023; 68:823-833. [PMID: 37118368 DOI: 10.1007/s12223-023-01057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/14/2023] [Indexed: 04/30/2023]
Abstract
In the constant search for new pharmacological compounds, molecular hybridisation is a well-known technique whereby two or more known pharmacophoric subunits are combined to create a new "hybrid" compound. This hybrid is expected to maintain the characteristics of the original compounds whilst demonstrating improvements to their pharmacological action. Accordingly, we report here a series of molecular hybrid compounds based upon eugenol and chloramphenicol pharmacophores. The hybrid compounds were screened for their in vitro antimicrobial potential against Gram-negative and Gram-positive bacteria and also rapidly growing mycobacteria (RGM). The results highlight that the antimicrobial profiles of the hybrid compounds improve in a very clear fashion when moving through the series. The most prominent results were found when comparing the activity of the hybrid compounds against some of the multidrug-resistant clinical isolates of Pseudomonas aeruginosa, methicillin-resistant clinical isolates of Staphylococcus aureus (MRSA) and clinical isolates of rapidly growing mycobacteria.
Collapse
Affiliation(s)
- Lucas M Oliveira
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, D-208E, Alfenas, MG, Brazil
| | - Fallon S Siqueira
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Michelle T Silva
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, D-208E, Alfenas, MG, Brazil
| | - José V C Machado
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, D-208E, Alfenas, MG, Brazil
| | - Cleydson F Cordeiro
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, D-208E, Alfenas, MG, Brazil
| | - Lívia F Diniz
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Marli M A Campos
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Lucas L Franco
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, D-208E, Alfenas, MG, Brazil
| | - Thiago B Souza
- Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Jamie A Hawkes
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, D-208E, Alfenas, MG, Brazil
| | - Diogo T Carvalho
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, D-208E, Alfenas, MG, Brazil.
| |
Collapse
|
4
|
Azevedo-Barbosa H, Ferreira-Silva GÁ, do Vale BP, Hawkes JA, Ionta M, Carvalho DT. Synthesis and Structure-Activity Relationship Studies of Novel Aryl Sulfonamides and Their Activity against Human Breast Cancer Cell Lines. Chem Biodivers 2022; 19:e202200831. [PMID: 36305872 DOI: 10.1002/cbdv.202200831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/27/2022] [Indexed: 12/27/2022]
Abstract
A series of structural analogs of aryl sulfonamide hybrid compounds were synthesised and their cytotoxic activity was evaluated against three human breast cancer cell lines (MCF-7, MDA-MB-231 and Hs 578T). The compounds were designed through electronic, hydrophobic and steric modifications using the chemical structure of N-{4-[(2-hydroxy-3-methoxy-5-propylphenyl)sulfamoyl]phenyl}acetamide (referred to as compound 7) as a starting point to then assess a structure-activity relationship (SAR) study. From the data generated, we observed that compounds 9, 10 and 11 (which have modifications in the substituents of the aryl sulfonamide), efficiently reduced the cell viability of MCF-7 and MDA-MB-231 cell cultures. Based on initial data, we selected compounds 10 and 11 for further investigations into their antiproliferative and/or cytotoxic profile against MDA-MB-231 cells, and we noted that compound 10 was the most promising compound in the series. Compound 10 promoted morphological changes and altered the dynamics of cell cycle progression in MDA-MB-231 cells, inducing arrest in G1/S transition. Taken together, these results show that the dihydroeugenol-aryl-sulfonamide hybrid compound 10 (which has an electron withdrawing nitro group) displays promising antiproliferative activity against MDA-MB-231 cell lines.
Collapse
Affiliation(s)
- Helloana Azevedo-Barbosa
- LQFar - Laboratory of Pharmaceutical Chemistry Research, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 700, Gabriel Monteiro da Silva, 37130-001, Alfenas, MG, Brazil
| | - Guilherme Álvaro Ferreira-Silva
- LABAInt - Laboratory of Integrative Animal Biology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Bianca Pereira do Vale
- LQFar - Laboratory of Pharmaceutical Chemistry Research, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 700, Gabriel Monteiro da Silva, 37130-001, Alfenas, MG, Brazil
| | - Jamie Anthony Hawkes
- LQFar - Laboratory of Pharmaceutical Chemistry Research, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 700, Gabriel Monteiro da Silva, 37130-001, Alfenas, MG, Brazil
| | - Marisa Ionta
- LABAInt - Laboratory of Integrative Animal Biology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Diogo Teixeira Carvalho
- LQFar - Laboratory of Pharmaceutical Chemistry Research, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 700, Gabriel Monteiro da Silva, 37130-001, Alfenas, MG, Brazil
| |
Collapse
|
5
|
Chen G, Zhu L, He J, Zhang S, Li Y, Guo X, Sun D, Tian Y, Liu S, Huang X, Che Z. Combinatorial Synthesis of Novel 1-Sulfonyloxy/acyloxyeugenol Derivatives as Fungicidal Agents. Comb Chem High Throughput Screen 2021; 25:1545-1551. [PMID: 34391376 DOI: 10.2174/1386207324666210813114829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Developing the high-efficiency and low-risk small-molecule green-fungicide is the key to effective control of the plant pathogenic oomycetes. Essential oils play a very important role in novel fungicide discovery for their unique sources and potential target sites. Eugenol, a kind of plant essential oil, was mainly isolated from the unopened and dried flower buds of Syzygium aromaticum of the Myrtaceae family. Due to its unique structural skeleton, eugenol and its derivatives have exhibited a wide range of biological activities. However, study on the synthesis of novel 1-sulfonyloxy/acyloxyeugenol derivatives as fungicidal agents against Phytophthora capsici has not yet been reported. METHODS Twenty-six novel 1-sulfonyloxy/acyloxyeugenol derivatives (3a-p and 5a-j) were prepared and their structures were well characterized by 1H NMR, HRMS, and m.p.. Their fungicidal activity was evaluated against P. capsici by using the mycelial growth rate method. RESULTS To find novel natural-product-based fungicidal agents to control the plant pathogenic oomycetes, we herein designed and synthesized two series of novel 1-sulfonyloxy/acyloxyeugenol derivatives (3a-p and 5a-j) as fungicidal agents against P. capsici Leonian, in vitro. Results of fungicidal activity revealed that, among all compounds, especially compounds 3a, 3f, and 3n displayed the most potent anti-oomycete activity against P. capsici with EC50 values of 79.05, 75.05, and 70.80, respectively. CONCLUSION The results revealed that the anti-oomycete activity of eugenol with the sulfonyloxy group was higher than that with the acyloxy group. It is suggested that the fungicidal activity of eugenol can be improved by introducing the sulfonyloxy group. This will pave the way for further design, structural modification, and to develop eugenol derivatives as fungicidal agents.
Collapse
Affiliation(s)
- Genqiang Chen
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Lina Zhu
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Jiaxuan He
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Song Zhang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Yuanhao Li
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaolong Guo
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Di Sun
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Yuee Tian
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Shengming Liu
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaobo Huang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhiping Che
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
6
|
Chen G, Zhu L, He J, Zhang S, Li Y, Guo X, Sun D, Tian Y, Liu S, Huang X, Che Z. Synthesis and Anti-Oomycete Activity of 1-Sulfonyloxy/Acyloxydihydroeugenol Derivatives. Chem Biodivers 2021; 18:e2100329. [PMID: 34346150 DOI: 10.1002/cbdv.202100329] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022]
Abstract
Endeavor to discover biorational natural products-based fungicides, two series (26) of novel 1-sulfonyloxy/acyloxydihydroeugenol derivatives (3a-p and 5a-j) were prepared and assessed for their fungicidal activity against P. capsici Leonian, in vitro. Results of fungicidal activity revealed that, among all compounds, especially compounds 3a, 5c, and 5e displayed the most potent anti-oomycete activity against P. capsici with EC50 values of 69.33, 68.81, and 67.77 mg/L, respectively. Overall, the anti-oomycete activities of 1-acyloxydihydroeugenol derivatives (5a-j) were higher than that of 1-sulfonyloxydihydroeugenol derivatives (3a-p). It is proved that the introduction of the acyl group at hydroxy position of dihydroeugenol is more beneficial to improve its anti-oomycete activity than that of the sulfonyl group. These preliminary results will pave the way for further modification of dihydroeugenol in the development of potential new fungicides.
Collapse
Affiliation(s)
- Genqiang Chen
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Lina Zhu
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Jiaxuan He
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Song Zhang
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Yuanhao Li
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Xiaolong Guo
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Di Sun
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Yuee Tian
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Shengming Liu
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Xiaobo Huang
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Zhiping Che
- Laboratory of Pesticidal Design and Synthesis, Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| |
Collapse
|