1
|
Blaj LA, Cucu AI, Tamba BI, Turliuc MD. The Role of the NF-kB Pathway in Intracranial Aneurysms. Brain Sci 2023; 13:1660. [PMID: 38137108 PMCID: PMC10871091 DOI: 10.3390/brainsci13121660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The pathophysiology of intracranial aneurysms (IA) has been proven to be closely linked to hemodynamic stress and inflammatory pathways, most notably the NF-kB pathway. Therefore, it is a potential target for therapeutic intervention. In the present review, we investigated alterations in the vascular smooth muscle cells (VSMCs), extracellular matrix, and endothelial cells by the mediators implicated in the NF-kB pathway that lead to the formation, growth, and rupture of IAs. We also present an overview of the NF-kB pathway, focusing on stimuli and transcriptional targets specific to IAs, as well as a summary of the current strategies for inhibiting NF-kB activation in IAs. Our report adds to previously reported data and future research directions for treating IAs using compounds that can suppress inflammation in the vascular wall.
Collapse
Affiliation(s)
- Laurentiu Andrei Blaj
- Department of Neurosurgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.A.B.); (M.D.T.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Andrei Ionut Cucu
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
- Faculty of Medicine and Biological Sciences, University Stefan cel Mare of Suceava, 720229 Suceava, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Pharmacology, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Dana Turliuc
- Department of Neurosurgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.A.B.); (M.D.T.)
- “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| |
Collapse
|
2
|
Baranovicova E, Kalenska D, Kovalska M, Lehotsky J. Hippocampal metabolic recovery as a manifestation of the protective effect of ischemic preconditioning in rats. Neurochem Int 2022; 160:105419. [PMID: 36113578 DOI: 10.1016/j.neuint.2022.105419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 10/31/2022]
Abstract
The ever-present risk of brain ischemic events in humans and its full prevention make the detailed studies of an organism's response to ischemia at different levels essential to understanding the mechanism of the injury as well as protection. We used the four-vessel occlusion as an animal model of forebrain ischemia to investigate its impact on the metabolic alterations in both the hippocampus and the blood plasma to see changes on the systemic level. By inducing sublethal ischemic stimuli, we focused on the endogenous phenomena known as ischemic tolerance. NMR spectroscopy was used to analyze relative metabolite levels in tissue extracts from rats' hippocampus and blood plasma in three various ischemic/reperfusion times: 3 h, 24 h, and 72 h. Hippocampal tissues were characterized by postischemically decreased glutamate and GABA (4-aminobutyrate) tissue content balanced with increased glutamine level, with most pronounced changes at 3 h reperfusion time. Glutamate (as well as glutamine) levels recovered towards the control levels on the third day, as if the glutamate re-synthesis would be firstly preferred before GABA. These results are indicating the higher feasibility of re-establishing of glutamatergic transmission three days after an ischemic event, in contrast to GABA-ergic. Tissue levels of N-acetylaspartate (NAA), as well as choline, were decreased without the tendency to recover three days after the ischemic event. Metabolomic analysis of blood plasma revealed that ischemically preconditioned rats, contrary to the non-preconditioned animals, did not show hyperglycemic conditions. Ischemically induced semi-ketotic state, manifested in increased plasma ketone bodies 3-hydroxybutyrate and acetoacetate, seems to be programmed to support the brain tissue revitalization after the ischemic event. These and other metabolites changes found in blood plasma as well as in the hippocampus were observed to a lower extent or recovered faster in preconditioned animals. Some metabolomic changes in hippocampal tissue extract were so strong that even single metabolites were able to differentiate between ischemic, ischemically preconditioned, and control brain tissues.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia.
| |
Collapse
|
3
|
Zhang S, Xia W, Duan H, Li X, Qian S, Shen H. Ischemic Preconditioning Alleviates Mouse Renal Ischemia/Reperfusion Injury by Enhancing Autophagy Activity of Proximal Tubular Cells. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:217-230. [PMID: 35702707 PMCID: PMC9149508 DOI: 10.1159/000521850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/07/2022] [Indexed: 05/27/2023]
Abstract
OBJECTIVES Ischemia/reperfusion injury (IRI) is one of the most vital pathogenesis leading to kidney injury but lacks effective prevention and treatment strategies. This study was conducted to investigate the influences of ischemic preconditioning (IPC) on the pathological process of mouse renal IRI (RIRI) and to figure out the role of autophagy of proximal tubular cells (PTCs) in this process. METHODS C57BL/6J mice were randomized to three groups, i.e., sham-operated group, ischemia/reperfusion (I/R) group, and IPC + I/R group. Meanwhile, 3-methyladenine, an autophagy inhibitor, was administered when further verification was needed. Histological and functional severity of kidney injury, the autophagy and apoptosis activity of PTCs, as well as the characterization of the immune cell infiltration landscape in kidney tissues were investigated. Furthermore, HK-2 cells and primary cultured PTC were cultured to set up the hypoxic preconditioning and hypoxia/reoxygenation model for in vitro simulation and verification, and a microarray dataset derived from the Gene Expression Omnibus database was analyzed to explore the transcriptome profiles after IPC. RESULTS IPC could significantly attenuate I/R-induced kidney injury functionally and histologically both in the acute and recovery phase of RIRI by enhancing the autophagy activity of PTCs. Cell autophagy could regulate the release of monocyte chemoattractant protein-1, and sequentially decrease macrophages infiltration in kidney tissues in the acute phase of RIRI, thus mediating the reno-protective effect. CONCLUSIONS IPC could attenuate mouse RIRI-induced kidney injury. IPC-mediated activation of autophagy of PTCs plays a vital role in affording protection in RIRI-induced kidney injury.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weimin Xia
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huangqi Duan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyan Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Subo Qian
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haibo Shen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Liang Y, Xue N, Wang X, Ding X, Fang Y. Superagonistic CD28 protects against renal ischemia injury induced fibrosis through a regulatory T-cell expansion dependent mechanism. BMC Nephrol 2019; 20:407. [PMID: 31706278 PMCID: PMC6842503 DOI: 10.1186/s12882-019-1581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/03/2019] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yiran Liang
- Department of Nephrology, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Shanghai, 200032, China
| | - Ning Xue
- Department of Nephrology, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Shanghai, 200032, China.,Shanghai Medical Center of Kidney, Shanghai, China
| | - Xiaoyan Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Shanghai, 200032, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Shanghai, 200032, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Shanghai, 200032, China. .,Shanghai Medical Center of Kidney, Shanghai, China. .,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China. .,Shanghai Institute of Kidney and Dialysis, Shanghai, China.
| |
Collapse
|
5
|
Choi HS, Hwang JK, Kim JG, Hwang HS, Lee SJ, Chang YK, Kim JI, Moon IS. The optimal duration of ischemic preconditioning for renal ischemia-reperfusion injury in mice. Ann Surg Treat Res 2017; 93:209-216. [PMID: 29094031 PMCID: PMC5658303 DOI: 10.4174/astr.2017.93.4.209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/12/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
Purpose The aim of the present study was to investigate the protective effects of ischemic preconditioning for different periods of time and to elucidate the optimal safe ischemic preconditioning time for renal ischemia-reperfusion (I/R) injury in mice. Methods A total of 25 male C57BL/6 mice were randomly divided into 5 groups (sham, I/R, ischemic preconditioning [IP]-3, IP-5, and IP-7 groups), in which the kidney was preconditioned with IP of various durations and then subjected to I/R injury (the last 3 groups). To induce renal ischemia, the left renal pedicle was occluded with a nontraumatic microaneurysm clamp for 30 minutes followed by reperfusion for 24 hours. The effects of IP on renal I/R injury were evaluated in terms of renal function, tubular necrosis, apoptotic cell death and inflammatory cytokines. Results Results indicated that BUN and creatinine (Cr) levels increased significantly in the I/R group, but the elevations were significantly lower in IP groups, especially in the IP-5 group. Histological analysis revealed that kidney injury was markedly decreased in the IP-5 group compared with the I/R group, as evidenced by reduced renal necrosis/apoptosis. In addition, IP significantly inhibited gene expression of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and chemokines (monocyte chemoattractant protein-1). Western blot analysis indicated that the expression levels of Toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) were upregulated in the I/R group, while expression was inhibited in the IP groups. Conclusion Five-minute IP had the greatest protective effect against I/R injury.
Collapse
Affiliation(s)
- Hyun Su Choi
- Department of Clinical Research, Daejeon St. Mary's Hospital, Daejeon, Korea
| | - Jeong Kye Hwang
- Department of Surgery, Daejeon St. Mary's Hospital, Daejeon, Korea
| | - Jeong Goo Kim
- Department of Surgery, Daejeon St. Mary's Hospital, Daejeon, Korea
| | - Hyeon Seok Hwang
- Department of Internal Medicine, Daejeon St. Mary's Hospital, Daejeon, Korea
| | - Sang Ju Lee
- Department of Internal Medicine, Daejeon St. Mary's Hospital, Daejeon, Korea
| | - Yoon Kyung Chang
- Department of Internal Medicine, Daejeon St. Mary's Hospital, Daejeon, Korea
| | - Ji Il Kim
- Department of Surgery, Uijeongbu St. Mary's Hospital, Uijeongbu, Korea
| | - In Sung Moon
- Department of Surgery, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
6
|
Xu X, Jiao X, Song N, Luo W, Liang M, Ding X, Teng J. Role of miR‑21 on vascular endothelial cells in the protective effect of renal delayed ischemic preconditioning. Mol Med Rep 2017; 16:2627-2635. [PMID: 28677811 PMCID: PMC5548024 DOI: 10.3892/mmr.2017.6870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/25/2017] [Indexed: 12/18/2022] Open
Abstract
Vascular endothelial cells may serve crucial roles in the development of acute kidney injury (AKI). microRNA (miR)-21, which possesses a renal protective function has been found on vascular endothelial cells. The present study aimed to test the hypothesis that miR-21 may protect vascular endothelial cells against injury, which may contribute to the protective effects of renal delayed ischemic preconditioning (IPC). Preconditioned (15 min ischemia) or Sham mice (not clamped) were subjected to 35 min occlusion of bilateral renal pedicles 4 days following preconditioning or Sham treatment. Human umbilical vein endothelial cells (HUVECs) were treated with cobalt(II) chloride (CoCl2) to establish an in vitro hypoxia model. Locked nucleic acid-modified anti-miR-21 or scrambled control oligonucleotides were transfected into cells or delivered into mice via tail vein injection <1 h prior to IPC. Following 24 h of reperfusion or hypoxia, morphological and functional parameters, apoptosis and miR-21 and programmed cell death 4 (PDCD4) expression were assessed in vivo and in vitro. Treatment of HUVECs with CoCl2 led to an upregulation of miR-21 expression, a downregulation of PDCD4 protein expression and attenuation of apoptosis. Inhibition of miR-21 expression led to increased expression levels of PDCD4 protein and apoptosis in HUVECs. IPC attenuated renal IR injury in mice. The protective effect of IPC appeared to be dependent on upregulated miR-21 expression. IPC-induced upregulation of miR-21 expression also occurred in HUVECs, and IPC also led to reduced PDCD4 expression and vascular permeability in mouse kidneys. The effects of IPC were attenuated by the inhibition of miR-21; miR-21 expression attenuated damage in vascular endothelial cells, which may contribute to the protective effects of delayed IPC on renal IR injury. The present study suggested a novel target for the prevention and repair of AKI in the future.
Collapse
Affiliation(s)
- Xialian Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xiaoyan Jiao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Weili Luo
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Mingyu Liang
- Department of Physiology and Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
7
|
Chen Y, Jiang S, Zou J, Zhong Y, Ding X. Silencing HIF-1α aggravates growth inhibition and necrosis of proximal renal tubular epithelial cell under hypoxia. Ren Fail 2016; 38:1726-1734. [PMID: 27756181 DOI: 10.1080/0886022x.2016.1229994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The kidney is particularly susceptible to ischemia/hypoxia insult while dysfunction of proximal tubular epithelial cells (PTEC) is a primary pathologic hallmark in acute kidney injury. Hypoxia-inducible factor-1 (HIF-1) is a key regulator responsible for cellular hypoxic responses. Therefore, we investigated the effects of HIF-1 suppression, using small interference RNA (siRNA), upon the cell fate of PTEC under hypoxia, and explored the underlying possible molecular mechanism. Hypoxia was induced with hypoxia mimetic cobalt chloride. Our data showed that, in HIF-1α siRNA group, the HK-2 cells growth inhibition and necrosis became worse than those in hypoxia group. However, for apoptosis, no significant difference was observed between them. Consistent with the downregulation of HIF-1α in HIF-1α siRNA group, both mRNA and protein expression of glucose transporter-1 (Glut-1) and vascular endothelial growth factor (VEGF) also reduced more significantly than those in hypoxia group. In conclusion, silencing HIF-1α gene could aggravate growth inhibition and necrosis of PTEC under hypoxia. We provide evidence, from the opposite direction, that HIF-1 activation under hypoxia may facilitate adaptation and survival of proximal renal tubular cells, and the beneficial effects may be related to its downstream genes, such as Glut-1 and VEGF.
Collapse
Affiliation(s)
- Yue Chen
- a Department of Nephrology , Tongji Hospital, Tongji University , Shanghai , China.,b Department of Nephrology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Suhua Jiang
- b Department of Nephrology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Jianzhou Zou
- b Department of Nephrology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Yihong Zhong
- b Department of Nephrology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Xiaoqiang Ding
- b Department of Nephrology , Zhongshan Hospital, Fudan University , Shanghai , China
| |
Collapse
|
8
|
Remote ischemic postconditioning protects against renal ischemia/reperfusion injury by activation of T-LAK-cell-originated protein kinase (TOPK)/PTEN/Akt signaling pathway mediated anti-oxidation and anti-inflammation. Int Immunopharmacol 2016; 38:395-401. [PMID: 27355132 DOI: 10.1016/j.intimp.2016.06.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/18/2016] [Accepted: 06/21/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Recent clinical and animal studies suggested that remote limb ischemic postconditioning (RIPostC) can invoke potent cardioprotection or neuroprotection. However, the effect and mechanism of RIPostC against renal ischemia/reperfusion injury (IRI) are poorly understood. T-LAK-cell-originated protein kinase (TOPK) is crucial for the proliferation and migration of tumor cells. However, the function of TOPK and the molecular mechanism underlying renal protection remain unknown. Therefore, this study aimed to evaluate the role of TOPK in renoprotection induced by RIPostC. MATERIALS AND METHODS The renal IRI model was induced by left renal pedicle clamping for 45min followed by 24h reperfusion and right nephrectomy. All mice were intraperitoneally injected with vehicle, TOPK inhibitor HI-TOPK-032 or Akt inhibitor LY294002. After 24h reperfusion, renal histology, function, and inflammatory cytokines and oxidative stress were assessed. The proteins were measured by Western blotting. RESULTS The results showed that RIPostC significantly protected the kidneys against IRI. The protective effects were accompanied by the attenuation of renal dysfunction, tubular damage, inflammation and oxidative stress. In addition, RIPostC increased the phosphorylation of TOPK, PTEN, Akt, GSK3β and the nuclear translocation of Nrf2 and decreased the nuclear translocation of NF-κB. However, all of the above renoprotective effects of RIPostC were eliminated either by the inhibition of TOPK or Akt with HI-TOPK-032 or LY294002. CONCLUSIONS The current data reveal that RIPostC protects against renal IRI via activation of TOPK/PTEN/Akt signaling pathway mediated anti-oxidation and anti-inflammation.
Collapse
|
9
|
Kierulf-Lassen C, Nieuwenhuijs-Moeke GJ, Krogstrup NV, Oltean M, Jespersen B, Dor FJMF. Molecular Mechanisms of Renal Ischemic Conditioning Strategies. Eur Surg Res 2015; 55:151-83. [PMID: 26330099 DOI: 10.1159/000437352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/02/2015] [Indexed: 11/19/2022]
Abstract
Ischemia-reperfusion injury is the leading cause of acute kidney injury in a variety of clinical settings such as renal transplantation and hypovolemic and/or septic shock. Strategies to reduce ischemia-reperfusion injury are obviously clinically relevant. Ischemic conditioning is an inherent part of the renal defense mechanism against ischemia and can be triggered by short periods of intermittent ischemia and reperfusion. Understanding the signaling transduction pathways of renal ischemic conditioning can promote further clinical translation and pharmacological advancements in this era. This review summarizes research on the molecular mechanisms underlying both local and remote ischemic pre-, per- and postconditioning of the kidney. The different types of conditioning strategies in the kidney recruit similar powerful pro-survival mechanisms. Likewise, renal ischemic conditioning mobilizes many of the same protective signaling pathways as in other organs, but differences are recognized.
Collapse
|
10
|
Xu X, Kriegel AJ, Jiao X, Liu H, Bai X, Olson J, Liang M, Ding X. miR-21 in ischemia/reperfusion injury: a double-edged sword? Physiol Genomics 2014; 46:789-97. [PMID: 25159851 DOI: 10.1152/physiolgenomics.00020.2014] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are endogenous, small RNA molecules that suppress expression of targeted mRNA. miR-21, one of the most extensively studied miRNAs, is importantly involved in divergent pathophysiological processes relating to ischemia/reperfusion (I/R) injury, such as inflammation and angiogenesis. The role of miR-21 in renal I/R is complex, with both protective and pathological pathways being regulated by miR-21. Preconditioning-induced upregulation of miR-21 contributes to the protection against subsequent renal I/R injury through the targeting of genes such as the proapoptotic gene programmed cell death 4 and interactions between miR-21 and hypoxia-inducible factor. Conversely, long-term elevation of miR-21 may be detrimental to the organ by promoting the development of renal interstitial fibrosis following I/R injury. miR-21 is importantly involved in several pathophysiological processes related to I/R injury including inflammation and angiogenesis as well as the biology of stem cells that could be used to treat I/R injury; however, the effect of miR-21 on these processes in renal I/R injury remains to be studied.
Collapse
Affiliation(s)
- Xialian Xu
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaoyan Jiao
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Hong Liu
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Xiaowen Bai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Olson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaoqiang Ding
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China; Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, Peoples Republic of China; Kidney and Dialysis Institute of Shanghai, Shanghai, Peoples Republic of China; and Kidney and Blood Purification Laboratory of Shanghai, Shanghai, Peoples Republic of China
| |
Collapse
|
11
|
Camara-Lemarroy CR. Remote ischemic preconditioning as treatment for non-ischemic gastrointestinal disorders: Beyond ischemia-reperfusion injury. World J Gastroenterol 2014; 20:3572-3581. [PMID: 24707140 PMCID: PMC3974524 DOI: 10.3748/wjg.v20.i13.3572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/23/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
Common gastrointestinal diseases such as radiation enteritis (RE), acute pancreatitis, inflammatory bowel diseases (IBD) and drug-induced hepatotoxicity share pathophysiological mechanisms at the molecular level, mostly involving the activation of many pathways of the immune response, ultimately leading to tissue injury. Increased oxidative stress, inflammatory cytokine release, inflammatory cell infiltration and activation and the up-regulation of inflammatory transcription factors participate in the pathophysiology of these complex entities. Treatment varies in each specific disease, but at least in the cases of RE and IBD immunosuppressors are effective. However, full therapeutic responses are not always achieved. The pathophysiology of ischemia-reperfusion (IR) injury shares many of these mechanisms. Brief and repetitive periods of ischemia in an organ or limb have been shown to protect against subsequent major IR injury in distant organs, a phenomenon called remote ischemic preconditioning (RIP). This procedure has been shown to protect the gut, pancreas and liver by modulating many of the same inflammatory mechanisms. Since RIP is safe and tolerable, and has shown to be effective in some recent clinical trials, I suggest that RIP could be used as a physiologically relevant adjunct treatment for non-ischemic gastrointestinal inflammatory conditions.
Collapse
|
12
|
Chen J, Zhang X, Zhang H, Lin J, Zhang C, Wu Q, Ding X. Elevated Klotho promoter methylation is associated with severity of chronic kidney disease. PLoS One 2013; 8:e79856. [PMID: 24224012 PMCID: PMC3818221 DOI: 10.1371/journal.pone.0079856] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/25/2013] [Indexed: 12/14/2022] Open
Abstract
Klotho (KL) expression is down-regulated in the renal tissues of chronic kidney disease (CKD) animal models and patients with end-stage renal disease. The putative role of KL promoter hypermethylation in the progression of CKD remains unclear. The present study aimed to determine renal and peripheral blood mononuclear cells (PBMC) levels of KL promoter methylation and analyze their relationship with clinical and histological severity in patients with CKD. Using bisulfite pyrosequencing, renal and PBMC levels of KL promoter methylation were quantified in 47 patients with CKD. 47 nephrectomy specimens of patients with renal cell carcinoma and 48 PBMC specimens of healthy volunteers were used as renal tissue and PBMC controls, respectively. Renal expression of KL protein was assayed by immunohistochemistry staining. Receiver operating characteristic (ROC) curve was used to identify the optimal cut-off value of PBMC KL promoter methylation level for renal KL promoter hypermethylation. Higher levels of KL promoter methylation were observed in renal tissue and PBMC in patients with CKD compared with controls (8.79±3.24 vs. 5.17±1.11%, P<0.001; 7.20±2.79 vs. 3.27±0.79%, P<0.001). In these patients, renal KL methylation level correlated inversely with renal KL immunostaining intensity (ρ=-0.794, P<0.001). Estimated glomerular filtration rate correlated inversely with renal and PBMC levels of KL promoter methylation (r=-0.829, P<0.001; r=-0.645, P<0.001), while tubulointerstistial fibrosis score correlated positively (ρ=0.826, P<0.001; ρ=0.755, P<0.001). PBMC KL promoter methylation level correlated positively with renal KL promoter methylation level in patients with CKD (r=0.787, P<0.001). In ROC curve, the area under curve was 0.964 (P<0.001) and the optimal cut-off value was 5.83% with a sensitivity of 93.8% and specificity of 86.7% to predict renal KL promoter hypermethylation. The degree of KL promoter methylation is associated with clinical and histological severity of CKD. PBMC KL promoter methylation level may act as a potential biomarker of renal KL promoter hypermethylation.
Collapse
Affiliation(s)
- Jing Chen
- Laboratory of Kidney Disease, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (XD); (XZ)
| | - Han Zhang
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Lin
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Zhang
- School of Public Health, Fudan University, Shanghai, China
| | - Qing Wu
- School of Public Health, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Laboratory of Kidney Disease, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (XD); (XZ)
| |
Collapse
|
13
|
Yu X, Lu C, Liu H, Rao S, Cai J, Liu S, Kriegel AJ, Greene AS, Liang M, Ding X. Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLoS One 2013; 8:e62703. [PMID: 23671625 PMCID: PMC3650042 DOI: 10.1371/journal.pone.0062703] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/22/2013] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cell (MSC) administration is known to enhance the recovery of the kidney following injury. Here we tested the potential of hypoxic-preconditioned-MSC transplantation to enhance the efficacy of cell therapy on acute kidney injury (AKI) by improving MSC migration to the injured kidney. Cobalt was used as hypoxia mimetic preconditioning (HMP). MSC were subjected to HMP through 24 h culture in 200 µmol/L cobalt. Compared to normoxia cultured MSC (NP-MSC), HMP significantly increased the expression of HIF-1α and CXCR4 in MSC and enhanced the migration of MSC in vitro. This effect was lost when MSC were treated with siRNA targeting HIF-1α or CXCR4 antagonist. SPIO labeled MSC were administered to rats with I/R injury followed immediately by magnetic resonance imaging. Imaging clearly showed that HMP-MSC exhibited greater migration and a longer retention time in the ischemic kidney than NP-MSC. Histological evaluation showed more HMP-MSC in the glomerular capillaries of ischemic kidneys than in the kidneys receiving NP-MSC. Occasional tubules showed iron labeling in the HMP group, while no tubules had iron labeling in NP group, indicating the possibility of tubular transdifferentiation after HMP. These results were also confirmed by fluorescence microscopy study using CM-DiI labeling. The increased recruitment of HMP-MSC was associated with reduced kidney injury and enhanced functional recovery. This effect was also related to the increased paracrine action by HMP-MSC. Thus we suggest that by enhancing MSC migration and prolonging kidney retention, hypoxic preconditioning of MSC may be a useful approach for developing AKI cell therapy.
Collapse
Affiliation(s)
- Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (XD); (XY)
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Liu
- Department of Nephrology, Hangzhou Hospital of TCM, Hangzhou, China
| | - Shengxiang Rao
- Department of Radiology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jieru Cai
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shaopeng Liu
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Alison J. Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Andrew S. Greene
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Minyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (XD); (XY)
| |
Collapse
|
14
|
Ischemic preconditioning increases endothelial progenitor cell number to attenuate partial nephrectomy-induced ischemia/reperfusion injury. PLoS One 2013; 8:e55389. [PMID: 23383174 PMCID: PMC3561290 DOI: 10.1371/journal.pone.0055389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/21/2012] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES The objective of this study was to investigate the role of endothelial progenitor cells (EPCs) in the modulation of ischemia-reperfusion injury (IRI) in a partial nephrectomy (PN) rat model using early-phase ischemic preconditioning (IPC). MATERIALS AND METHODS Ninety male Sprague-Dawley rats were randomly divided into three groups following right-side nephrectomy: Sham-operated rats (surgery without vascular clamping); PN rats (renal blood vessels were clamped for 40 min and PN was performed); and IPC rats (pretreated with 15 min ischemia and 10 min reperfusion). At 1, 3, 6, 12, 24 h, and 3 days after reperfusion, the pool of circulating EPCs and kidneys were harvested. The extent of renal injury was assessed, along with EPC number, cell proliferation, angiogenesis, and vascular growth factor expression. RESULTS Pretreated rats exhibited significant improvements in renal function and morphology. EPC numbers in the kidneys were increased at 12 h following reperfusion in the IPC group as compared to the PN or Sham groups. Cell proliferation (including endothelial and tubular epithelial cells) and angiogenesis in peritubular capillaries were markedly increased in kidneys treated with IPC. In addition, vascular endothelial growth factor-A (VEGF-A) and stromal cell-derived factor-1α (SDF-1α) expression in the kidneys of pretreated rats was increased compared to rats subjected to PN. CONCLUSIONS OUR INVESTIGATION SUGGESTED THAT: (1) the early phase of IPC may attenuate renal IRI induced by PN; (2) EPCs play an important role in renal protection, involving promotion of cell proliferation and angiogenesis through release of several angiogenic factors.
Collapse
|
15
|
Below-Target Postoperative Arterial Blood Pressure but Not Central Venous Pressure Is Associated With Delayed Graft Function. Transplant Proc 2013; 45:46-50. [DOI: 10.1016/j.transproceed.2012.03.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 02/20/2012] [Accepted: 03/06/2012] [Indexed: 10/27/2022]
|
16
|
Mahfoudh-Boussaid A, Zaouali MA, Hauet T, Hadj-Ayed K, Miled AH, Ghoul-Mazgar S, Saidane-Mosbahi D, Rosello-Catafau J, Abdennebi HB. Attenuation of endoplasmic reticulum stress and mitochondrial injury in kidney with ischemic postconditioning application and trimetazidine treatment. J Biomed Sci 2012; 19:71. [PMID: 22853733 PMCID: PMC3431271 DOI: 10.1186/1423-0127-19-71] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 07/23/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) and mitochondria have been implicated in the pathology of renal ischemia/reperfusion (I/R). In the present study, we investigated whether the use of ischemic postconditioning (IPostC) and trimetazidine (TMZ) separately or combined could reduce ER stress and mitochondria damage after renal ischemia. METHODS Kidneys of Wistar rats were subjected to 60-min of warm ischemia followed by 120-min of reperfusion (I/R group, n = 6), or to 6 cycles of ischemia/reperfusion (10-s each cycle) just after 60-min of warm ischemia (IPostC group, n = 6), or to i.p. injection of TMZ (3 mg/kg) 30-min before ischemia (TMZ group, n = 6), or to the combination of both treatments (IPostC+TMZ group, n = 6). The results of these experimental groups were compared to those of a sham-operated group in which rat renal pedicles were only dissected. Sodium reabsorption rate, creatinine clearance lactate deshydrogenase (LDH) activity in plasma, and concentration of malonedialdehyde (MDA) in tissue were determined. In addition, Western blot analysis was performed to identify the amounts of cytochrome c, c-JunNH2-terminal kinase (JNK), voltage-dependent anion channel (VDAC), glycogen synthase kinase 3-beta (GSK3-β), and ER stress parameters. RESULTS IPostC or/and TMZ significantly decreased cytolysis, oxidative stress and improved renal function in comparison to I/R group. IPostC but not TMZ significantly attenuated ER stress parameters versus I/R group. Indeed, it down-regulated the glucose-regulated protein 78 (GRP78), the activating transcription factor 4 (ATF4), the RNA activated protein kinase (PKR)-like ER kinas (PERK), the X box binding protein-1 (XBP-1) and the caspase12 protein levels. TMZ treatment significantly augmented GSK3-β phosphorylation and reduced levels of cytochrome c and VDAC phosphorylation in comparison to IPostC application. The combination of both treatments gave a synergetic effect. It significantly improved the survival rate, attenuated cytolysis, oxidative stress and improved renal function. CONCLUSION This study revealed that IPostC protects kidney from I/R injury by suppressing ER stress while the beneficial effects of TMZ are mediated by mitochondria protection. The combination of both treatments ameliorated functional recovery.
Collapse
Affiliation(s)
- Asma Mahfoudh-Boussaid
- Laboratory of human physiology, faculty of pharmacy, university of Monastir, Rue Avicenne, Monastir, 5000, Tunisia
| | - Mohamed Amine Zaouali
- Department of experimental pathology, Hepatic ischemia reperfusion unit, IIBB-CSIC, Barcelona, Spain
| | - Thierry Hauet
- Inserm U927, faculty of medicine and pharmacy, university of Poitiers, Poitiers, France
| | - Kaouther Hadj-Ayed
- Laboratory of human physiology, faculty of pharmacy, university of Monastir, Rue Avicenne, Monastir, 5000, Tunisia
| | - Abdel-Hédi Miled
- Laboratory of biochemistry, faculty of pharmacy, university of Monastir, Monastir, Tunisia
| | - Sonia Ghoul-Mazgar
- Laboratory of histology and embryology, faculty of dental medicine, university of Monastir, Monastir, Tunisia
| | - Dalila Saidane-Mosbahi
- Laboratory of human physiology, faculty of pharmacy, university of Monastir, Rue Avicenne, Monastir, 5000, Tunisia
| | - Joan Rosello-Catafau
- Department of experimental pathology, Hepatic ischemia reperfusion unit, IIBB-CSIC, Barcelona, Spain
| | - Hassen Ben Abdennebi
- Laboratory of human physiology, faculty of pharmacy, university of Monastir, Rue Avicenne, Monastir, 5000, Tunisia
| |
Collapse
|
17
|
Xu X, Kriegel AJ, Liu Y, Usa K, Mladinov D, Liu H, Fang Y, Ding X, Liang M. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int 2012; 82:1167-75. [PMID: 22785173 PMCID: PMC3777822 DOI: 10.1038/ki.2012.241] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Delayed ischemic preconditioning effectively protects kidneys from ischemia-reperfusion injury but the mechanism underlying renal protection remains poorly understood. Here we examined the in vivo role of microRNA miR-21 in the renal protection conferred by delayed ischemic preconditioning in mice. A 15 minute renal ischemic preconditioning significantly increased the expression of miR-21 by 4 hours and substantially attenuated ischemia-reperfusion injury induced 4 days later. A locked nucleic acid-modified anti-miR-21 given at the time of ischemic preconditioning knocked down miR-21 and significantly exacerbated subsequent ischemia-reperfusion injury in the mouse kidney. Knockdown of miR-21 resulted in significant upregulation of programmed cell death protein 4, a pro-apoptotic target gene of miR-21, and substantially increased tubular cell apoptosis. Hypoxia inducible factor-1α in the kidney was activated after ischemic preconditioning and blockade of its activity with a decoy abolished the up-regulation of miR-21 in cultured human renal epithelial cells treated with the inducer cobalt chloride. In the absence of ischemic preconditioning, knockdown of miR-21 alone did not significantly affect ischemia-reperfusion injury in the mouse kidney. Thus, upregulation of miR-21 contributes to the protective effect of delayed ischemic preconditioning against subsequent renal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xialian Xu
- Division of Nephrology, Shanghai Medical College, Fudan University, Zhongshan Hospital, Shanghai, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yu X, Liu H, Zou J, Zhu J, Xu X, Ding X. Oxidative Stress in 5/6 Nephrectomized Rat Model: Effect of Alpha-Lipoic Acid. Ren Fail 2012; 34:907-14. [DOI: 10.3109/0886022x.2012.691012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Yu X, Fang Y, Ding X, Liu H, Zhu J, Zou J, Xu X, Zhong Y. Transient hypoxia-inducible factor activation in rat renal ablation and reduced fibrosis with L-mimosine. Nephrology (Carlton) 2012; 17:58-67. [PMID: 21777345 DOI: 10.1111/j.1440-1797.2011.01498.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Hypoxia-inducible factor (HIF) activity during the course of chronic kidney disease (CKD) development is poorly defined, and the effect of HIF activation on CKD is still controversial. The purpose of the present study was to characterize HIF expression during the course of CKD development, and to investigate the effect of HIF activation on CKD by using prolyl hydroxylase (PHD) inhibitor L-mimosine. METHODS Rats with remnant kidneys (RK) were killed at week 1, 2, 4, 6, 8, 12 after subtotal nephrectomy. An additional group of RK rats was treated with L-mimosine to study the effect of HIF-α activation. RESULTS Tubulointerstitial hypoxia in the remnant kidney began at week 1 and continued, albeit attenuated, until week 12, the last time point examined. The nuclear expression of HIF-1α and HIF-2α, as well as typical HIF target genes VEGF (vascular endothelial growth factor), HO-1 (heme oxygenase-1), GLUT-1 (glucose transporter-1) and EPO (erythropoietin), were all upregulated in the early stage of RK when renal function was stable, and returned to the basal level later, accompanied by impaired renal function and interstitial fibrosis. L-mimosine administered from week 5 to week 12 led to accumulation of HIF-1α and HIF-2α proteins, increased expression of VEGF, HO-1 and GLUT-1, and improved renal function. Furthermore, fibrosis markers α-smooth muscle actin (α-SMA) and Collagen III, as well as peritubular capillary rarefaction index, were all significantly decreased after L-mimosine treatment. CONCLUSION There was a transient HIF-α activation in the remnant kidney of rats at the early stage following subtotal nephrectomy. L-mimosine administered in later stages re-activated HIF-α and reduced tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mahfoudh-Boussaid A, Zaouali MA, Hadj-Ayed K, Miled AH, Saidane-Mosbahi D, Rosello-Catafau J, Abdennebi HB. Ischemic preconditioning reduces endoplasmic reticulum stress and upregulates hypoxia inducible factor-1α in ischemic kidney: the role of nitric oxide. J Biomed Sci 2012; 19:7. [PMID: 22252226 PMCID: PMC3398272 DOI: 10.1186/1423-0127-19-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/17/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Although recent studies indicate that renal ischemic preconditioning (IPC) protects the kidney from ischemia-reperfusion (I/R) injury, the precise protective mechanism remains unclear. In the current study, we investigated whether early IPC could upregulate hypoxia inducible transcription factor-1α (HIF-1α) expression and could reduce endoplasmic reticulum (ER) stress after renal I/R and whether pharmacological inhibition of nitric oxide (NO) production would abolish these protective effects. METHODS Kidneys of Wistar rats were subjected to 60 min of warm ischemia followed by 120 min of reperfusion (I/R group), or to 2 preceding cycles of 5 min ischemia and 5 min reperfusion (IPC group), or to intravenously injection of NG-nitro-L-arginine methylester (L-NAME, 5 mg/kg) 5 min before IPC (L-NAME+IPC group). The results of these experimental groups were compared to those of a sham-operated group. Sodium reabsorption rate, creatinine clearance, plasma lactate dehydrogenase (LDH) activity, tissues concentrations of malonedialdehyde (MDA), HIF-1α and nitrite/nitrate were determined. In addition, Western blot analyses were performed to identify the amounts of Akt, endothelial nitric oxide synthase (eNOS) and ER stress parameters. RESULTS IPC decreased cytolysis, lipid peroxidation and improved renal function. Parallelly, IPC enhanced Akt phosphorylation, eNOS, nitrite/nitrate and HIF-1α levels as compared to I/R group. Moreover, our results showed that IPC increased the relative amounts of glucose-regulated protein 78 (GRP78) and decreased those of RNA activated protein kinase (PKR)-like ER kinase (PERK), activating transcription factor 4 (ATF4) and TNF-receptor-associated factor 2 (TRAF2) as judged to I/R group. However, pre treatment with L-NAME abolished these beneficial effects of IPC against renal I/R insults. CONCLUSION These findings suggest that early IPC protects kidney against renal I/R injury via reducing oxidative and ER stresses. These effects are associated with phosphorylation of Akt, eNOS activation and NO production contributing thus to HIF-1α stabilization. The beneficial impact of IPC was abolished when NO production is inhibited before IPC application.
Collapse
Affiliation(s)
| | - Mohamed Amine Zaouali
- Hepatic ischemia reperfusion unit, Department of experimental pathology, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Kaouther Hadj-Ayed
- Laboratory of human physiology, faculty of pharmacy, university of Monastir, Tunisia
| | - Abdel-Hédi Miled
- Laboratory of biochemistry, faculty of pharmacy, university of Monastir, Tunisia
| | | | - Joan Rosello-Catafau
- Hepatic ischemia reperfusion unit, Department of experimental pathology, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Hassen Ben Abdennebi
- Laboratory of human physiology, faculty of pharmacy, university of Monastir, Tunisia
| |
Collapse
|
21
|
Latanich CA, Toledo-Pereyra LH. Searching for NF-kappaB-based treatments of ischemia reperfusion injury. J INVEST SURG 2010; 22:301-15. [PMID: 19842907 DOI: 10.1080/08941930903040155] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
When a tissue becomes ischemic, a host of changes occur at the cellular level that lead to a shift in transcriptional activity of many inflammatory and cytoprotective compounds, a process which is extensively controlled through a family of transcription factors known as nuclear factor kappa-B (NF-kappaB). This shift in activity paradoxically results in both a cytoprotective effect at the cellular level and upon reperfusion, a generally destructive inflammatory response, a phenomenon referred to as ischemia reperfusion (IR) injury. To date, a number of methods of modifying the activity of NF-kappaB through either physiologic or pharmacologic manipulation have been developed and studied in animal models of IR injury and in some cases in human clinical trials. Nearly every method of NF-kappaB antagonism has demonstrated a discrete protective effect allowing investigators to reduce myocardial infarct sizes by 60% and cerebral infarct sizes by 57% relative to untreated control animals. The problem of IR injury is all too common and represents a discrete threat not only to the tissues directly involved in the ischemic event, but also to distal sites as well as is seen in the evolution of acute respiratory distress and severe inflammatory response syndromes. In the course of this review, the nature of NF-kappaB and its involvement in IR injury is examined along with the efficacy of the various NF-kappaB-based investigational treatment developed to date.
Collapse
|
22
|
The role of KATP channels on propofol preconditioning in a cellular model of renal ischemia-reperfusion. Anesth Analg 2009; 109:1486-92. [PMID: 19843786 DOI: 10.1213/ane.0b013e3181b76396] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Propofol (2,6-diisopropylphenol) has been shown to protect several organs, including the kidneys, from ischemia-reperfusion (I-R)-induced injury. Although propofol affects adenosine triphosphate-sensitive potassium (K(ATP)) channels in nonrenal tissues, it is still not clear by which mechanisms propofol protects renal cells from such damage. In this study, we investigated whether propofol induces renal preconditioning through renal K(ATP) channels. METHODS A reversible ATP depletion (antimycin A) followed by restoration of substrate supply in LLC-PK1 cells was used as an in vitro model of renal I-R. Cell viability was assessed by dimethylthiazol-diphenyltetrazol bromide and trypan blue dye exclusion test assays. Apoptosis was evaluated by annexin V-fluorescein isothiocyanate staining by flow cytometry and immunofluorescence. Propofol treatments were initiated at various time intervals: 1 or 24 h before ischemia, only during ischemia, or only during reperfusion. To evaluate the mechanisms of propofol protection, specific K(ATP) channel inhibitors or activators were used in some experiments during propofol pretreatment. RESULTS Propofol attenuated I-R injury on LLC-PK1 cells when present either 1 or 24 h before initiated I-R, and also during the recovery period, but not when added only during ischemia. Propofol pretreatment significantly protected LLC-PK1 from I-R-induced apoptosis. The protective effect of propofol was prevented by glibenclamide (a sarcolemmal ATP-dependent K(+) channel blocker) and decreased by 5-hydroxidecanoic acid (a mitochondrial ATP-dependent K(+) channel blocker), but it was not modified by diazoxide (a selective opener of ATP-sensitive K(+) channel). CONCLUSION Propofol protected cells against apoptosis induced by I-R. This protection was probably due to a preconditioning effect of propofol and was, at least in part, mediated by K(ATP) channels.
Collapse
|
23
|
Szabó A, Varga R, Keresztes M, Vízler C, Németh I, Rázga Z, Boros M. Ischemic limb preconditioning downregulates systemic inflammatory activation. J Orthop Res 2009; 27:897-902. [PMID: 19105227 DOI: 10.1002/jor.20829] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We examined local and systemic antiinflammatory consequences of ischemic preconditioning (IPC) in a rat model of limb ischemia-reperfusion (I-R) by characterizing the leukocyte-endothelial interactions in the periosteum and the expression of adhesion molecules playing a role in leukocyte-mediated inflammatory processes. IPC induction (2 cycles of 10 min of complete limb ischemia and 10 min of reperfusion) was followed by 60 min of ischemia/180 min of reperfusion or sham-operation. Data were compared with those on animals subjected to I-R and sham-operation. Neutrophil leukocyte-endothelial cell interactions (intravital videomicroscopy), intravascular neutrophil activation (CD11b expression changes by flow cytometry), and soluble and tissue intercellular adhesion molecule-1 (ICAM-1; ELISA and immunohistochemistry, respectively) expressions were assessed. I-R induced enhanced leukocyte rolling and adherence in the periosteal postcapillary venules after 120 and 180 min of reperfusion. This was associated with a significantly enhanced CD11b expression (by approximately 80% and 72%, respectively) and moderately increased soluble and periosteal ICAM-1 expressions. IPC prevented the I-R-induced increases in leukocyte adherence and CD11b expression without influencing the soluble and tissue ICAM-1 levels. The results show that limb IPC exerts not only local, but distant antiinflammatory effects through significant modulation of neutrophil recruitment.
Collapse
Affiliation(s)
- Andrea Szabó
- Institute of Surgical Research, University of Szeged, H-6720 Szeged, Pécsi u. 6, Hungary.
| | | | | | | | | | | | | |
Collapse
|
24
|
Nuclear factor-κB inhibition provides additional protection against ischaemia/reperfusion injury in delayed sevoflurane preconditioning. Eur J Anaesthesiol 2009; 26:496-503. [DOI: 10.1097/eja.0b013e328324ed2e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Wojcikowski K, Wohlmuth H, Johnson DW, Gobe G. Dioscorea villosa (wild yam) induces chronic kidney injury via pro-fibrotic pathways. Food Chem Toxicol 2008; 46:3122-31. [DOI: 10.1016/j.fct.2008.06.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/20/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
|