1
|
Duchez AC, Arthaud CA, Eyraud MA, Prier A, Heestermans M, Hamzeh-Cognasse H, Cognasse F. The composition of single-donor apheresis platelet concentrates is influenced by the age of the donor. Sci Rep 2025; 15:13505. [PMID: 40251396 PMCID: PMC12008385 DOI: 10.1038/s41598-025-97916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
The aging population often faces health issues that sometimes necessitate transfusions. Transfusion services are increasingly concerned about the rising number of transfusions and the aging donor population, as both factors are crucial in maintaining the quality of blood donations. In this context, our study aims to measure the bioactive molecule cytokine levels in single donor apheresis platelet concentrates (SDA-PC) based on the donor's age and to determine whether these cytokines, in conjunction with the donor age, could contribute to transfusion adverse reactions (AR). Our findings indicate that well-known platelet molecules such as sCD62P, as well as IL-13, ADAMTS13, MIP-1α, NGAL, MCP-3, HSAA, GDF-15, CX3CL1, and MDC, were present in SDA-PC. Levels of MIP-1α, GDF-15, and sCD62P increased with donor aging, whereas levels of MDC decreased. In conclusion, most of the cytokine levels detected were elevated in cases of AR and with increasing donor age. Notably, GDF-15 was the only cytokine that showed a positive correlation with age in the context of AR.
Collapse
Affiliation(s)
- Anne-Claire Duchez
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.
- INSERM, Université Jean Monnet, Mines Saint-Étienne, U 1059 SAINBIOSE, F- 42023, Saint-Etienne, France.
| | - Charles-Antoine Arthaud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- INSERM, Université Jean Monnet, Mines Saint-Étienne, U 1059 SAINBIOSE, F- 42023, Saint-Etienne, France
| | - Marie-Ange Eyraud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- INSERM, Université Jean Monnet, Mines Saint-Étienne, U 1059 SAINBIOSE, F- 42023, Saint-Etienne, France
| | - Amélie Prier
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- INSERM, Université Jean Monnet, Mines Saint-Étienne, U 1059 SAINBIOSE, F- 42023, Saint-Etienne, France
| | - Marco Heestermans
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- INSERM, Université Jean Monnet, Mines Saint-Étienne, U 1059 SAINBIOSE, F- 42023, Saint-Etienne, France
| | - Hind Hamzeh-Cognasse
- INSERM, Université Jean Monnet, Mines Saint-Étienne, U 1059 SAINBIOSE, F- 42023, Saint-Etienne, France
| | - Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- INSERM, Université Jean Monnet, Mines Saint-Étienne, U 1059 SAINBIOSE, F- 42023, Saint-Etienne, France
| |
Collapse
|
2
|
Lu Z, Ding L, Jiang X, Zhang S, Yan M, Yang G, Tian X, Wang Q. Single-nucleus RNA transcriptome profiling reveals murine adipose tissue endothelial cell proliferation gene networks involved in obesity development. Arch Biochem Biophys 2024; 757:110029. [PMID: 38729594 DOI: 10.1016/j.abb.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Endothelial cells play an important role in the metabolism of adipose tissue (AT). This study aimed to analyze the changes that adipose tissue in AT endothelial cells undergo during the development of obesity, using single-nucleus RNA sequence (snRNA-seq). Mouse paraepididymal AT cells were subjected to snRNA-seq with the 10X Genomics platform. The cell types were then clustered using t-distributed stochastic neighbor embedding and unbiased computational informatics analyses. Protein-protein interactions network was established using the STRING database and visualized using Cytoscape. The dataset was subjected to differential gene enrichment analysis. In total, 21,333 cells acquired from 24 mouse paraepididymal AT samples were analyzed using snRNA-seq. This study identified 18 distinct clusters and annotated macrophages, fibroblasts, epithelial cells, T cells, endothelial cells, stem cells, neutrophil cells, and neutrophil cell types based on representative markers. Cluster 12 was defined as endothelial cells. The proportion of endothelial cells decreased with the development of obesity. Inflammatory factors, such as Vegfa and Prdm16 were upregulated in the medium obesity group but downregulated in the obesity group. Genes, such as Prox1, Erg, Flt4, Kdr, Flt1, and Pecam1 promoted the proliferation of AT endothelial cells and maintained the internal environment of AT. This study established a reference model and general framework for studying the mechanisms, biomarkers, and therapeutic targets of endothelial cell dysfunction-related diseases at the single-cell level.
Collapse
Affiliation(s)
- Zhimin Lu
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Ling Ding
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Xing Jiang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Sen Zhang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Min Yan
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Guangxin Yang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Xuewen Tian
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China.
| | - Qinglu Wang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China.
| |
Collapse
|
3
|
Lin J, Chen X, Li Y, Yu L, Chen Y, Zhang B. A dual-targeting therapeutic nanobubble for imaging-guided atherosclerosis treatment. Mater Today Bio 2024; 26:101037. [PMID: 38586870 PMCID: PMC10995877 DOI: 10.1016/j.mtbio.2024.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Atherosclerosis is a cardiovascular disease that seriously endangers human health. Low shear stress (LSS) is recognized as a vital factor in causing chronic inflammatory and further inducing the occurrence and development of atherosclerosis. Targeting imaging and treatment are of substantial significance for the diagnosis and therapy of atherosclerosis. On this ground, a kind of ultrasound (US) imaging-guided therapeutic polymer nanobubbles (NBs) with dual targeting of magnetism and antibody was rationally designed and constructed for the efficiently treating LSS-mediated atherosclerosis. Under the combined targeting effect of an external magnetic field and antibodies, the drug-loaded therapeutic NBs can be effectively accumulated in the inflammatory area caused by LSS. Upon US irradiation, the NBs can be selectively disrupted, leading to the rapid release of the loaded drugs at the targeted site. Notably, the US irradiation generates a cavitation effect that induces repairable micro gaps in nearby cells, thereby enhancing the uptake of released drugs and further improving the therapeutic effect. The prominent US imaging, efficient anti-inflammatory effect and treatment outcome of LSS-mediated atherosclerosis had been verified in vivo on a surgically constructed LSS-atherosclerosis animal model. This work showcased the potential of the designed NBs with multifunctionality for in vivo imaging, dual-targeting, and drug delivery in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jie Lin
- Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Xiaoying Chen
- Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Yi Li
- Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Luodan Yu
- Department of Radiology, Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
- Shanghai Institute of Materdicine, Shanghai, 200051, PR China
| | - Bo Zhang
- Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| |
Collapse
|
4
|
Lu Y, Chen D, Wang B, Chai W, Yan M, Chen Y, Zhan Y, Yang R, Zhou E, Dai S, Li Y, Dong R, Zheng B. Single-cell landscape of undifferentiated pleomorphic sarcoma. Oncogene 2024; 43:1353-1368. [PMID: 38459120 DOI: 10.1038/s41388-024-03001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Undifferentiated pleomorphic sarcoma (UPS) is a highly aggressive malignant soft tissue tumor with a poor prognosis; however, the identity and heterogeneity of tumor populations remain elusive. Here, eight major cell clusters were identified through the RNA sequencing of 79,569 individual cells of UPS. UPS originates from mesenchymal stem cells (MSCs) and features undifferentiated subclusters. UPS subclusters were predicted to exist in two bulk RNA datasets, and had a prognostic value in The Cancer Genome Atlas (TCGA) dataset. The functional heterogeneity of malignant UPS cells and the immune microenvironment were characterized. Additionally, the fused cells were innovatively detected by expressing both monocyte/macrophage markers and other subcluster-associated genes. Based on the ligand-receptor interaction analysis, cellular interactions with epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) were abundant. Furthermore, 73% of patients with UPS (48/66) showed positive EGFR expression, which was associated with a poor prognosis. EGFR blockade with cetuximab inhibited tumor growth in a patient-derived xenograft model. Our transcriptomic studies delineate the landscape of UPS intratumor heterogeneity and serve as a foundational resource for further discovery and therapeutic exploration.
Collapse
Affiliation(s)
- Yifei Lu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Deqian Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Bingnan Wang
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenjun Chai
- Department of Animal Experimental Center, Fudan University Shanghai Cancer Center, Shanghai, 201102, China
| | - Mingxia Yan
- Department of Animal Experimental Center, Fudan University Shanghai Cancer Center, Shanghai, 201102, China
| | - Yong Chen
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Enqing Zhou
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Shuyang Dai
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China.
| | - Biqiang Zheng
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Liu H, Xu S, Xu Z, Cheng S, Du M. Absorption characteristics and the effect on vascular endothelial cell permeability of an anticoagulant peptide. Food Res Int 2023; 173:113405. [PMID: 37803744 DOI: 10.1016/j.foodres.2023.113405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
In the former report, the casein peptide TKLTEEEKNR (PfCN) exhibits strong thrombin inhibitory activity in vitro. Its absorption capabilities, however, are unclear. Therefore, we studied its absorption characteristics both in vivo and in vitro. PfCN was carried by cells from the apical chamber to the basolateral chamber via active translocation in Caco-2 cells. Meanwhile, it can also be transported by HUVECs. We found that PfCN can be taken up by HUVECs using confocal laser imaging. PfCN has been proven to have good absorption properties in in vivo experiments. After five minutes of oral treatment, PfCN was identified in the blood, peaking at 82.75 ± 36.52 ng/mL in 30 min. And PfCN vanished from the blood circulation after 120 min. According to in vivo experiments, excessive concentrations of PfCN will alter the permeability of HUVECs. As a result, there is a foundation for PfCN application in the food sector. Meanwhile, we also hope this article can give an idea to the researchers who studying the absorption of functional peptides.
Collapse
Affiliation(s)
- Hanxiong Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Shiqi Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Zhe Xu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116029, China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Kosiński K, Malinowski D, Safranow K, Dziedziejko V, Pawlik A. PECAM1, COL4A2, PHACTR1, and LMOD1 Gene Polymorphisms in Patients with Unstable Angina. J Clin Med 2022; 11:jcm11020373. [PMID: 35054067 PMCID: PMC8778316 DOI: 10.3390/jcm11020373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Coronary artery disease (CAD) is a syndrome resulting from myocardial ischaemia of heterogeneous pathomechanism. Environmental and genetic factors contribute to its development. Atherosclerotic plaques that significantly narrow the lumen of coronary arteries cause symptoms of myocardial ischaemia. Acute coronary incidents are most often associated with plaque rupture or erosion accompanied by local activation of the coagulation system with thrombus formation. Plaque formation and stability are influenced by endothelial function and vascular smooth muscle cell function. In this study, we investigated the association between polymorphisms in genes affecting endothelial and vascular smooth muscle cell (VSMC) function and the occurrence of unstable angina pectoris. The aim of this study was to evaluate the association between the PECAM1 (rs1867624), COL4A2 (rs4773144), PHACTR1 (rs9349379) and LMOD1 (rs2820315) gene polymorphisms and the risk of unstable angina. The study included 232 patients with unstable angina diagnosed on the basis of clinical symptoms and coronary angiography and 144 healthy subjects with no significant coronary lumen stenosis at coronary angiography. There were no statistically significant differences in the distribution of COL4A2 rs4773144 and PECAM1 rs1867624 gene polymorphisms between patients with unstable angina and control subjects. In patients with unstable angina, there was an increased frequency of PHACTR1 rs9349379 G allele carriers (GG and AG genotypes) (GG+AG vs. AA, OR 1.71; 95% CI 1.10-2.66, p = 0.017) and carriers of the LMOD1 rs2820315 T allele (TT and CT genotypes) (TT+CT vs. CC, OR 1.65; 95% CI 1.09-2.51, p = 0.019) compared to the control group. The association between these alleles and unstable angina was confirmed by multivariate logistic regression analysis, in which the number of G (PHACTR1 rs9349379) and T (LMOD1 rs2820315) alleles was an independent risk factor for unstable angina. The results suggest an association between PHACTR1 rs9349379 and LMOD1 rs2820315 polymorphisms and the risk of unstable angina.
Collapse
Affiliation(s)
- Krzysztof Kosiński
- Department of Cardiology, Hospital in Szczecin, Arkonska 4, 71-455 Szczecin, Poland;
| | - Damian Malinowski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.S.); (V.D.)
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.S.); (V.D.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence:
| |
Collapse
|
7
|
Huang L, Liao J, Chen Y, Zou C, Zhang H, Yang X, Zhang Q, Li T, Mo L, Zeng Y, Bao M, Zhang F, Ye Y, Yang Z, Cheng J, Mo Z. Single-cell transcriptomes reveal characteristic features of cell types within the human adrenal microenvironment. J Cell Physiol 2021; 236:7308-7321. [PMID: 33934358 DOI: 10.1002/jcp.30398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 01/24/2023]
Abstract
Various cells within the adrenal microenvironment are important in maintaining the body homeostasis. However, our understanding of adrenal disease pathogenesis is limited by an incomplete molecular characterization of the cell types responsible for the organ's multiple homeostatic functions. We report a cellular landscape of the human adrenal gland using single-cell RNA sequencing. We reveal characteristic features of cell types within the human adrenal microenvironment and found immune activation of nonimmune cells in the adrenal endothelial cells. We also reveal that abundant immune cells occupied a lot of space in adrenal gland. Additionally, Sex-related diversity in the adrenocortical cells and different gene expression profiles between the left and right adrenal gland are also observed at single-cell resolution. Together, at single-cell resolution, the transcriptomic map presents a comprehensive view of the human adrenal gland, which serves as a fundamental baseline description of this organ and paves a way for the further studies of adrenal diseases.
Collapse
Affiliation(s)
- Lin Huang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Jinling Liao
- Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Yang Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Chunlin Zou
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi Zhuang, China
| | - Haiying Zhang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Xiaobo Yang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Qinyun Zhang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Tianyu Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China
| | - Linjian Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China
| | - Yanyu Zeng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Mengying Bao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Fangxing Zhang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Yu Ye
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Zhanbin Yang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China
| | - Jiwen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Zengnan Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| |
Collapse
|
8
|
Network Pharmacology-Based Approach to Comparatively Predict the Active Ingredients and Molecular Targets of Compound Xueshuantong Capsule and Hexuemingmu Tablet in the Treatment of Proliferative Diabetic Retinopathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6642600. [PMID: 33747106 PMCID: PMC7954618 DOI: 10.1155/2021/6642600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/26/2022]
Abstract
Background Compound Xueshuantong capsule (CXC) and Hexuemingmu tablet (HXMMT) are two important Chinese patent medicines (CPMs) frequently used to treat proliferative diabetic retinopathy (PDR), especially when complicated with vitreous hemorrhage (VH). However, a network pharmacology approach to understand the therapeutic mechanisms of these two CPMs in PDR has not been applied. Objective To identify differences in the active ingredients between CXC and HXMMT and to comparatively predict and further analyze the molecular targets shared by these CPMs and PDR. Materials and methods. The differentially expressed messenger RNAs (mRNAs) between normal retinal tissues in healthy individuals and active fibrovascular membranes in PDR patients were retrieved from the Gene Expression Omnibus database. The active ingredients of CXC and HXMMT and the targets of these ingredients were retrieved from the Traditional Chinese Medicine Systems Pharmacology database. The intersections of the CPM (CXC and HXMMT) targets and PDR targets were determined. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed, and the ingredient-target networks, protein-protein interaction networks, and KEGG-target (KEGG-T) networks were constructed. Results CXC contains 4 herbs, and HXMMT contains 19. Radix salviae is the only herb common to both. CXC had 34 potential therapeutic targets in PDR, while HXMMT had these 34 and 10 additional targets. Both CPMs shared the following main processes: response to reactive oxygen species and oxidative stress, regulation of blood vessel diameter and size, vasoconstriction, smooth muscle contraction, hemostasis, and blood coagulation. The shared pathways included the AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, relaxin signaling pathway, and IL-17 signaling pathway. Conclusions Both CXC and HXMMT include components effective at treating PDR and affect the following main processes: response to reactive oxygen species and oxidative stress, regulation of blood vessels, and blood coagulation. Radix salviae, the only herb common to both CPMs, contains many useful active ingredients. The PDR-CXC and PDR-HXMMT networks shared 34 common genes (RELA, HSPA8, HSP90AA, HSP90AB1, BRCA, EWSR1, CUL7, HNRNPU, MYC, CTNNB1, MDM2, YWHAZ, CDK2, AR, FN1, HUWE1, TP53, TUBB, EP300, GRB2, VCP, MCM2, EEF1A1, NTRK1, TRAF6, EGFR, PRKDC, SRC, HDAC5, APP, ESR1, AKT1, UBC, and COPS5), and the PDR-HXMMT network has 10 additional genes (RNF2, VNL, RPS27, COPS5, XPO1, PARP1, RACK1, YWHAB, and ITGA4). The top 5 pathways with the highest gene ratio in both networks were the AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, relaxin signaling pathway, IL-17 signaling pathway, and focal adhesion. Additional pathways such as neuroactive ligand-receptor interaction, chemokine signaling pathway, and AMPK signaling pathway were enriched with HXMMT targets. Thus, HXMMT has more therapeutic targets shared by different active ingredients and more abundant gene functions than CXC, which may be two major reasons why HXMMT is more strongly recommended than CXC as an auxiliary treatment for new-onset VH secondary to PDR. However, the underlying mechanisms still need to be further explored.
Collapse
|
9
|
Zhu Z, Shen Y, Chen Y, Shi H, Shi Y. The exosome of platelet endothelial cell adhesion molecule-1 (PECAM1) protein: A potential risking star in high blood pressure patients (HBPP). Medicine (Baltimore) 2021; 100:e21370. [PMID: 33530152 PMCID: PMC7850734 DOI: 10.1097/md.0000000000021370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/18/2020] [Indexed: 01/05/2023] Open
Abstract
A number of studies have demonstrated that exosomes were involved in important physiological and pathological processes through cell-to-cell communication in cardiovascular disease, which contained nucleic acids, proteins, and lipid contents. In our study, we found that the protein platelet endothelial cell adhesion molecule-1 (PECAM1) was an extracellular vesicle in the blood of high blood pressure patients (HBPP).Isolated the vesicles from the blood of HBPP and health examiners and detected its size and morphology with nanoparticle tracking analysis, then we identified its surface protein CD63, CD81, and the protein expression of PECAM1 in the exosome with western blot. Furthermore, we analyzed the correlation between the expression of PECAM1 and the high blood degree with linear regression analysis.Our results showed that the morphology of extracellular vesicles was more evident in high blood pressure groups than healthy controls, and the protein expression of PECAM1 was also abundant in the vesicles of HBPP, however, there were no extracellular vesicles in the blood samples of healthy controls. Besides, linear regression showed the linear correlation coefficient R = 0.901, P < .01 between the expression of PECAM1 and the systolic blood pressure of the high blood patients. Therefore, the exosome of protein of PECAM1 was a potential risking star in HBPP.
Collapse
Affiliation(s)
- Zhidong Zhu
- Department of Cardiology, North Hospital of Huashan Hospital Affiliated to Fudan University
| | | | | | - Haiming Shi
- Department of Cardiology, Huashan Sub-Hospital of Fudan University
| | - Yun Shi
- Department of Cardiovascular Medicine, Kong Jiang Hospital of Yangpu District, Shuangyang Road, Shanghai, China
| |
Collapse
|
10
|
Kwak BS, Jin SP, Kim SJ, Kim EJ, Chung JH, Sung JH. Microfluidic skin chip with vasculature for recapitulating the immune response of the skin tissue. Biotechnol Bioeng 2020; 117:1853-1863. [PMID: 32100875 DOI: 10.1002/bit.27320] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/16/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
There is a considerable need for cell-based in vitro skin models for studying dermatological diseases and testing cosmetic products, but current in vitro skin models lack physiological relevance compared to human skin tissue. For example, many dermatological disorders involve complex immune responses, but current skin models are not capable of recapitulating the phenomena. Previously, we reported development of a microfluidic skin chip with a vessel structure and vascular endothelial cells. In this study, we cocultured dermal fibroblasts and keratinocytes with vascular endothelial cells, human umbilical vascular endothelial cells. We verified the formation of a vascular endothelium in the presence of the dermis and epidermis layers by examining the expression of tissue-specific markers. As the vascular endothelium plays a critical role in the migration of leukocytes to inflammation sites, we incorporated leukocytes in the circulating media and attempted to mimic the migration of neutrophils in response to external stimuli. Increased secretion of cytokines and migration of neutrophils was observed when the skin chip was exposed to ultraviolet irradiation, showing that the microfluidic skin chip may be useful for studying the immune response of the human tissue.
Collapse
Affiliation(s)
- Bong Shin Kwak
- Department of Chemical Engineering, Hongik University, Republic of Korea
| | - Seon-Pil Jin
- Department of Dermatology, Seoul National University Hospital, Republic of Korea.,Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University College of Medicine, Republic of Korea
| | - Su Jung Kim
- DYNEBIO INC., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Eun Joo Kim
- DYNEBIO INC., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University Hospital, Republic of Korea.,Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University College of Medicine, Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Republic of Korea
| |
Collapse
|
11
|
Yu DH, Huang JY, Liu XP, Ruan XL, Chen C, Hu WD, Li S. Effects of hub genes on the clinicopathological and prognostic features of lung adenocarcinoma. Oncol Lett 2020; 19:1203-1214. [PMID: 31966050 PMCID: PMC6956410 DOI: 10.3892/ol.2019.11193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a common malignancy; however, the majority of its underlying molecular mechanisms remain unknown. In the present study, weighted gene co-expression network analysis was applied to construct gene co-expression networks for the GSE19804 dataset, in order to screen hub genes associated with the pathogenesis of LUAD. In addition, with the aid of the Database for Annotation, Visualization and Integrated Discovery, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes, pathway enrichment analyses were performed on the genes in the selected module. Using the GSE40791 dataset and The Cancer Genome Atlas database, the hub genes were identified. It was discovered that the turquoise module was the most significant module associated with the tumor stage of LUAD. After performing functional enrichment analyses, it was indicated that the turquoise module was mainly enriched in signal transduction. Additionally, at the transcriptional and translational level, nine hub genes were identified and validated: Carbonic anhydrase 4 (CA4), platelet and endothelial cell adhesion molecule 1 (PECAM1), DnaJ member B4 (DNAJB4), advanced glycosylation end-product specific receptor (AGER), GTPase, IMAP family member 6 (GIMAP6), chromosome 10 open reading frame 54 (C10orf54), dedicator of cytokinesis 4 (DOCK4), Golgi membrane protein 1 (GOLM1) and platelet activating factor acetylhydrolase 1b catalytic subunit 3 (PAFAH1B3). CA4, PECAM1, DNAJB4, AGER, GIMAP6, C10orf54 and DOCK4 were expressed at lower levels in the tumor samples, whereas GOLM1 and PAFAH1B3 were highly expressed in tumor samples. In addition, all hub genes were associated with prognosis. In conclusion, one module and nine genes were recognized to be associated with the tumor stage of LUAD. These findings may enhance the understanding of the progression and prognosis of LUAD.
Collapse
Affiliation(s)
- Dong-Hu Yu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jing-Yu Huang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiao-Ping Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiao-Lan Ruan
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Chen Chen
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Wei-Dong Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Sheng Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
12
|
Duong CN, Nottebaum AF, Butz S, Volkery S, Zeuschner D, Stehling M, Vestweber D. Interference With ESAM (Endothelial Cell-Selective Adhesion Molecule) Plus Vascular Endothelial-Cadherin Causes Immediate Lethality and Lung-Specific Blood Coagulation. Arterioscler Thromb Vasc Biol 2020; 40:378-393. [DOI: 10.1161/atvbaha.119.313545] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective:
Vascular endothelial (VE)-cadherin is of dominant importance for the formation and stability of endothelial junctions, yet induced gene inactivation enhances vascular permeability in the lung but does not cause junction rupture. This study aims at identifying the junctional adhesion molecule, which is responsible for preventing endothelial junction rupture in the pulmonary vasculature in the absence of VE-cadherin.
Approach and Results:
We have compared the relevance of ESAM (endothelial cell-selective adhesion molecule), JAM (junctional adhesion molecule)-A, PECAM (platelet endothelial cell adhesion molecule)-1, and VE-cadherin for vascular barrier integrity in various mouse tissues. Gene inactivation of ESAM enhanced vascular permeability in the lung but not in the heart, skin, and brain. In contrast, deletion of JAM-A or PECAM-1 did not affect barrier integrity in any of these organs. Blocking VE-cadherin with antibodies caused lethality in ESAM
−/−
mice within 30 minutes but had no such effect in JAM-A
−/−
, PECAM-1
−/−
or wild-type mice. Likewise, induced gene inactivation of VE-cadherin caused rapid lethality only in the absence of ESAM. Ultrastructural analysis revealed that only combined interference with VE-cadherin and ESAM disrupted endothelial junctions and caused massive blood coagulation in the lung. Mechanistically, we could exclude a role of platelet ESAM in coagulation, changes in the expression of other junctional proteins or a contribution of cytoplasmic signaling domains of ESAM.
Conclusions:
Despite well-documented roles of JAM-A and PECAM-1 for the regulation of endothelial junctions, only for ESAM, we detected an essential role for endothelial barrier integrity in a tissue-specific way. In addition, we found that it is ESAM which prevents endothelial junction rupture in the lung when VE-cadherin is absent.
Collapse
Affiliation(s)
- Cao Nguyen Duong
- From the Department of Vascular Cell Biology (C.N.D., A.F.N., S.B., S.V., D.V.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Astrid F. Nottebaum
- From the Department of Vascular Cell Biology (C.N.D., A.F.N., S.B., S.V., D.V.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Stefan Butz
- From the Department of Vascular Cell Biology (C.N.D., A.F.N., S.B., S.V., D.V.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Stefan Volkery
- From the Department of Vascular Cell Biology (C.N.D., A.F.N., S.B., S.V., D.V.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy and Flow Cytometry Unit (D.Z., M.S.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Stehling
- Electron Microscopy and Flow Cytometry Unit (D.Z., M.S.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dietmar Vestweber
- From the Department of Vascular Cell Biology (C.N.D., A.F.N., S.B., S.V., D.V.), Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
13
|
Torres C, Machado R, Lima M. Flow cytometric characterization of the saphenous veins endothelial cells in patients with chronic venous disease and in patients undergoing bypass surgery: an exploratory study. Heart Vessels 2019; 35:1-13. [PMID: 31227876 DOI: 10.1007/s00380-019-01451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Recent findings have suggested that the primary factors for development of chronic venous disease (CVD), which commonly manifests as varicose veins (VV), are due to structural and biochemical modifications of the vessel wall. The aim of this exploratory study was to characterize by flow cytometry the endothelial cells (EC) mechanically extracted from the varicose saphenous veins (VSV) segments of patients submitted to VV surgery, and to compare the expression of cell surface molecules in these EC with that observed in the EC from the graft SV (GSV) of patients undergoing bypass surgery. EC were isolated from distal- (varicose trunk) and from proximal- (nearly normal) VSV segments of 30 patients submitted to VV surgery, and from proximal GSV segments of 20 patients submitted to bypass surgery (control group), using a mechanical method, and their immunophenotype was characterized by flow cytometry. EC were identified as being CD45negCD146brightCD31bright, and analyzed for expression of activation-related (CD54, CD62E, CD106), procoagulant (CD142), and cell junction (CD31, CD146) molecules, and for the scavenger receptor, CD36. The EC harvested from the SV segments of CVD patients had lower expression of all the molecules evaluated, in comparison to controls; these differences were more evident for the EC isolated from the distal-VSV. The EC extracted from the proximal- and distal-VSV segments of the CVD patients also differ from each other, the first having lower levels of CD62E, CD106, CD142 and CD36. Groups did not match for gender and controls were heterogeneous concerning the underlying pathologies, which may have a confounding effect. Our study revealed that the EC isolated from varicose (distal) and nearly normal (proximal) VSV segments of the CVD patients differ phenotypically from each other, and from the EC of the control group. The VSV segments more affected by the CVD have the lowest expression of the studied markers. We hypothesize that CVD is associated with a decrease on the EC surface molecules, causing EC dysfunctionality. Further studies with a large number of gender-matched participants are needed, to confirm the results obtained in this exploratory study.
Collapse
Affiliation(s)
- Cláudia Torres
- Laboratório de Citometria, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Rua D. Manuel II 57, 4050-014, Porto, Portugal. .,Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (UMIB/ICBAS/UP), Rua Jorge Viterbo Ferreira 228, 4050-343, Porto, Portugal.
| | - Rui Machado
- Serviço de Angiologia e Cirurgia Vascular, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Largo Prof. Abel Salazar, 4099-001, Porto, Portugal
| | - Margarida Lima
- Laboratório de Citometria, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Rua D. Manuel II 57, 4050-014, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (UMIB/ICBAS/UP), Rua Jorge Viterbo Ferreira 228, 4050-343, Porto, Portugal
| |
Collapse
|
14
|
Wawrzyńska M, Kraskiewicz H, Paprocka M, Krawczenko A, Bielawska‐Pohl A, Biały D, Roleder T, Wojakowski W, O'Connor IB, Duda M, Michal R, Wasyluk Ł, Plesch G, Podbielska H, Kopaczyńska M, Wall JG. Functionalization with a VEGFR2‐binding antibody fragment leads to enhanced endothelialization of a cardiovascular stent
in vitro
and
in vivo. J Biomed Mater Res B Appl Biomater 2019; 108:213-224. [DOI: 10.1002/jbm.b.34380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Magdalena Wawrzyńska
- Department of Emergency Medical ServiceWroclaw Medical University Wrocław Poland
| | - Honorata Kraskiewicz
- Balton Ltd Warsaw Poland
- Centre for Research in Medical Devices (CÚRAM)NUI Galway Galway Ireland
| | - Maria Paprocka
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of Sciences Wrocław Poland
| | - Agnieszka Krawczenko
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of Sciences Wrocław Poland
| | | | - Dariusz Biały
- Clinic of CardiologyWroclaw Medical University Wrocław Poland
| | - Tomasz Roleder
- Department of CardiologySchool of Health Sciences, Medical University of Silesia Katowice Poland
| | | | - Iain B. O'Connor
- Centre for Research in Medical Devices (CÚRAM)NUI Galway Galway Ireland
- MicrobiologyNUI Galway Galway Ireland
| | - Maciej Duda
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Technology and Science Wrocław Poland
| | - Robert Michal
- Department of Inorganic Chemistry, Faculty of Natural SciencesComenius University Bratislava Slovakia
| | | | - Gustav Plesch
- Department of Inorganic Chemistry, Faculty of Natural SciencesComenius University Bratislava Slovakia
| | - Halina Podbielska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Technology and Science Wrocław Poland
| | - Marta Kopaczyńska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of TechnologyWroclaw University of Technology and Science Wrocław Poland
| | - J. Gerard Wall
- Centre for Research in Medical Devices (CÚRAM)NUI Galway Galway Ireland
- MicrobiologyNUI Galway Galway Ireland
| |
Collapse
|
15
|
Abstract
This overview article for the Comprehensive Physiology collection is focused on detailing platelets, how platelets respond to various stimuli, how platelets interact with their external biochemical environment, and the role of platelets in physiological and pathological processes. Specifically, we will discuss the four major functions of platelets: activation, adhesion, aggregation, and inflammation. We will extend this discussion to include various mechanisms that can induce these functional changes and a discussion of some of the salient receptors that are responsible for platelets interacting with their external environment. We will finish with a discussion of how platelets interact with their vascular environment, with a special focus on interactions with the extracellular matrix and endothelial cells, and finally how platelets can aid and possibly initiate the progression of various vascular diseases. Throughout this overview, we will highlight both the historical investigations into the role of platelets in health and disease as well as some of the more current work. Overall, the authors aim for the readers to gain an appreciation for the complexity of platelet functions and the multifaceted role of platelets in the vascular system. © 2017 American Physiological Society. Compr Physiol 8:1117-1156, 2018.
Collapse
Affiliation(s)
- David A Rubenstein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
16
|
Sun X, Huang S, Wang X, Zhang X, Wang X. CD300A promotes tumor progression by PECAM1, ADCY7 and AKT pathway in acute myeloid leukemia. Oncotarget 2018; 9:27574-27584. [PMID: 29938007 PMCID: PMC6007949 DOI: 10.18632/oncotarget.24164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/01/2017] [Indexed: 12/23/2022] Open
Abstract
CD300A is a member of the CD300 glycoprotein family of cell surface proteins involved in immune response signaling pathways. There is evidence that CD300A plays a role in autophagy and angiogenesis, while, no studies have been reported which investigated the role of CD300A in tumors. CD300A was found to be highly expressed with statistical significance in acute myeloid leukemia (AML), as well as associated with prognosis, through the analysis of differential expression genes using the TCGA and GTEx database. A decrease in CD300A expression could promote apoptosis and inhibit proliferation and migration of AML cell line U937, as well as promote the activation of the AKT/mTOR pathway. These results demonstrated that CD300A operated as a tumor promoter in AML cells. We further analyzed coexpression genes of CD300A and then screened two genes, ADCY7 and PECAM1, which were both overexpressed and associated with poor prognosis in AML. Meanwhile, CD300A increased the expression of PECAM1 and ADCY7 in U937 cells. Furthermore, we demonstrated that PECAM1 promoted the proliferation and migration and inhibited the apoptosis of U937 cells. ADCY7 participated in the regulation of proliferation and migration, but not apoptosis, in U937 cells. Both PECAM1 and ADCY7 promoted tumor progression through the AKT pathway, showing the same molecular mechanism as CD300A. To summarize, we, for the first time, confirmed that CD300A promoted tumor progression by increase PECAM1 and ADCY7 expression, and activating the AKT/mTOR signaling pathway in AML. It is suggested CD300A is an oncogene and potential therapeutic target for AML.
Collapse
Affiliation(s)
- Xiaogang Sun
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Shuhong Huang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology, School of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xin Wang
- Tengzhou Municipal Hospital of Traditional Chinese Medicine, Tengzhou, Shandong, P.R. China
| | - Xiaohua Zhang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | - Xin Wang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| |
Collapse
|
17
|
Bardelli D, Dander E, Bugarin C, Cappuzzello C, Pievani A, Fazio G, Pierani P, Corti P, Farruggia P, Dufour C, Cesaro S, Cipolli M, Biondi A, D'Amico G. Mesenchymal stromal cells from Shwachman-Diamond syndrome patients fail to recreate a bone marrow niche in vivo and exhibit impaired angiogenesis. Br J Haematol 2018; 182:114-124. [PMID: 29767474 DOI: 10.1111/bjh.15388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/26/2018] [Indexed: 01/28/2023]
Abstract
Shwachman-Diamond syndrome (SDS) is a rare multi-organ recessive disease mainly characterised by pancreatic insufficiency, skeletal defects, short stature and bone marrow failure (BMF). As in many other BMF syndromes, SDS patients are predisposed to develop a number of haematopoietic malignancies, particularly myelodysplastic syndrome and acute myeloid leukaemia. However, the mechanism of cancer predisposition in SDS patients is only partially understood. In light of the emerging role of mesenchymal stromal cells (MSCs) in the regulation of bone marrow homeostasis, we assessed the ability of MSCs derived from SDS patients (SDS-MSCs) to recreate a functional bone marrow niche, taking advantage of a murine heterotopic MSC transplant model. We show that the ability of semi-cartilaginous pellets (SCPs) derived from SDS-MSCs to generate complete heterotopic ossicles in vivo is severely impaired in comparison with HD-MSC-derived SCPs. Specifically, after in vitro angiogenic stimuli, SDS-MSCs showed a defective ability to form correct networks, capillary tubes and vessels and displayed a marked decrease in VEGFA expression. Altogether, these findings unveil a novel mechanism of SDS-mediated haematopoietic dysfunction based on hampered ability of SDS-MSCs to support angiogenesis. Overall, MSCs could represent a new appealing therapeutic target to treat dysfunctional haematopoiesis in paediatric SDS patients.
Collapse
Affiliation(s)
- Donatella Bardelli
- Paediatric Department, Centro Ricerca Tettamanti, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Erica Dander
- Paediatric Department, Centro Ricerca Tettamanti, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Cristina Bugarin
- Paediatric Department, Centro Ricerca Tettamanti, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Claudia Cappuzzello
- Paediatric Department, Centro Ricerca Tettamanti, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Alice Pievani
- Department of Paediatrics, Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, University of Milano-Bicocca, Monza, Italy
| | - Grazia Fazio
- Paediatric Department, Centro Ricerca Tettamanti, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Paolo Pierani
- Department of Paediatric Haemato-Oncology, Ancona, Italy
| | - Paola Corti
- Department of Paediatrics, University of Milano-Bicocca, San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Piero Farruggia
- Department of Paediatric Haemato-Oncology, ARNAS Ospedali Civico, G Di Cristina, Palermo, Italy
| | - Carlo Dufour
- Haematology Unit, Giannina Gaslini Children's Research Hospital, Genoa, Italy
| | - Simone Cesaro
- Department of Paediatrics, Paediatric Haematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Marco Cipolli
- Azienda Ospedaliero Universitaria Ospedali Riuniti Umberto I - G.M. Lancisi - G. Salesi, Cystic Fibrosis Centre, Ancona, Italy
| | - Andrea Biondi
- Paediatric Department, Centro Ricerca Tettamanti, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy.,Department of Paediatrics, University of Milano-Bicocca, San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Giovanna D'Amico
- Paediatric Department, Centro Ricerca Tettamanti, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| |
Collapse
|
18
|
Aderetti DA, Hira VVV, Molenaar RJ, van Noorden CJF. The hypoxic peri-arteriolar glioma stem cell niche, an integrated concept of five types of niches in human glioblastoma. Biochim Biophys Acta Rev Cancer 2018; 1869:346-354. [PMID: 29684521 DOI: 10.1016/j.bbcan.2018.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Glioblastoma is the most lethal primary brain tumor and poor survival of glioblastoma patients is attributed to the presence of glioma stem cells (GSCs). These therapy-resistant, quiescent and pluripotent cells reside in GSC niches, which are specific microenvironments that protect GSCs against radiotherapy and chemotherapy. We previously showed the existence of hypoxic peri-arteriolar GSC niches in glioblastoma tumor samples. However, other studies have described peri-vascular niches, peri-hypoxic niches, peri-immune niches and extracellular matrix niches of GSCs. The aim of this review was to critically evaluate the literature on these five different types of GSC niches. In the present review, we describe that the five niche types are not distinct from one another, but should be considered to be parts of one integral GSC niche model, the hypoxic peri-arteriolar GSC niche. Moreover, hypoxic peri-arteriolar GSC niches are structural and functional look-alikes of hematopoietic stem cell (HSC) niches in the bone marrow. GSCs are maintained in peri-arteriolar niches by the same receptor-ligand interactions as HSCs in bone marrow. Our concept should be rigidly tested in the near future and applied to develop therapies to expel and keep GSCs out of their protective niches to render them more vulnerable to standard therapies.
Collapse
Affiliation(s)
- Diana A Aderetti
- Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Vashendriya V V Hira
- Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Remco J Molenaar
- Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; Department of Medical Oncology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
19
|
Sternak M, Bar A, Adamski MG, Mohaissen T, Marczyk B, Kieronska A, Stojak M, Kus K, Tarjus A, Jaisser F, Chlopicki S. The Deletion of Endothelial Sodium Channel α (αENaC) Impairs Endothelium-Dependent Vasodilation and Endothelial Barrier Integrity in Endotoxemia in Vivo. Front Pharmacol 2018; 9:178. [PMID: 29692722 PMCID: PMC5902527 DOI: 10.3389/fphar.2018.00178] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/16/2018] [Indexed: 01/09/2023] Open
Abstract
The role of epithelial sodium channel (ENaC) activity in the regulation of endothelial function is not clear. Here, we analyze the role of ENaC in the regulation of endothelium-dependent vasodilation and endothelial permeability in vivo in mice with conditional αENaC subunit gene inactivation in the endothelium (endo-αENaCKO mice) using unique MRI-based analysis of acetylcholine-, flow-mediated dilation and vascular permeability. Mice were challenged or not with lipopolysaccharide (LPS, from Salmonella typhosa, 10 mg/kg, i.p.). In addition, changes in vascular permeability in ex vivo organs were analyzed by Evans Blue assay, while changes in vascular permeability in perfused mesenteric artery were determined by a FITC-dextran-based assay. In basal conditions, Ach-induced response was completely lost, flow-induced vasodilation was inhibited approximately by half but endothelial permeability was not changed in endo-αENaCKO vs. control mice. In LPS-treated mice, both Ach- and flow-induced vasodilation was more severely impaired in endo-αENaCKO vs. control mice. There was also a dramatic increase in permeability in lungs, brain and isolated vessels as evidenced by in vivo and ex vivo analysis in endotoxemic endo-αENaCKO vs. control mice. The impaired endothelial function in endotoxemia in endo-αENaCKO was associated with a decrease of lectin and CD31 endothelial staining in the lung as compared with control mice. In conclusion, the activity of endothelial ENaC in vivo contributes to endothelial-dependent vasodilation in the physiological conditions and the preservation of endothelial barrier integrity in endotoxemia.
Collapse
Affiliation(s)
- Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | - Mateusz G Adamski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
| | - Tasnim Mohaissen
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland.,Chair and Department of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
| | - Anna Kieronska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
| | - Antoine Tarjus
- INSERM UMRS1138, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France
| | - Frederic Jaisser
- INSERM UMRS1138, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France.,INSERM, Clinical Investigation Centre 1433, Vandœuvre-lès-Nancy, France
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
20
|
Pan Y, Chen J, Yu Y, Dai K, Wang J, Liu C. Enhancement of BMP-2-mediated angiogenesis and osteogenesis by 2-N,6-O-sulfated chitosan in bone regeneration. Biomater Sci 2018; 6:431-439. [DOI: 10.1039/c7bm01006k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sulfated polysaccharides are attractive semi-synthesized materials that can be used as a mimic of heparan sulfate to modulate the protein activity and other physiological processes.
Collapse
Affiliation(s)
- Yuanzhong Pan
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- 200237 People's Republic of China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Jie Chen
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- 200237 People's Republic of China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Yuanman Yu
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- 200237 People's Republic of China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Kai Dai
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- 200237 People's Republic of China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- 200237 People's Republic of China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai
- 200237 People's Republic of China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| |
Collapse
|
21
|
A Fermented Whole Grain Prevents Lipopolysaccharides-Induced Dysfunction in Human Endothelial Progenitor Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1026268. [PMID: 28386305 PMCID: PMC5366772 DOI: 10.1155/2017/1026268] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/08/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023]
Abstract
Endogenous and exogenous signals derived by the gut microbiota such as lipopolysaccharides (LPS) orchestrate inflammatory responses contributing to development of the endothelial dysfunction associated with atherosclerosis in obesity, metabolic syndrome, and diabetes. Endothelial progenitor cells (EPCs), bone marrow derived stem cells, promote recovery of damaged endothelium playing a pivotal role in cardiovascular repair. Since healthy nutrition improves EPCs functions, we evaluated the effect of a fermented grain, Lisosan G (LG), on early EPCs exposed to LPS. The potential protective effect of LG against LPS-induced alterations was evaluated as cell viability, adhesiveness, ROS production, gene expression, and NF-kB signaling pathway activation. Our results showed that LPS treatment did not affect EPCs viability and adhesiveness but induced endothelial alterations via activation of NF-kB signaling. LG protects EPCs from inflammation as well as from LPS-induced oxidative and endoplasmic reticulum (ER) stress reducing ROS levels, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defense. Moreover, LG pretreatment prevented NF-kB translocation from the cytoplasm into the nucleus caused by LPS exposure. In human EPCs, LPS increases ROS and upregulates proinflammatory tone, proapoptotic factors, and antioxidants. LG protects EPCs exposed to LPS reducing ROS, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defenses possibly by inhibiting NF-κB nuclear translocation.
Collapse
|