1
|
Astaneh ME, Fereydouni N. Nanocurcumin-enhanced zein nanofibers: Advancing macrophage polarization and accelerating wound healing. Regen Ther 2025; 28:51-62. [PMID: 39687330 PMCID: PMC11647652 DOI: 10.1016/j.reth.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Chronic wounds continue to pose a significant global challenge, incurring substantial costs and necessitating extensive research in wound healing. Our previous work involved synthesizing zein nanofibers embedded with 5 %, 10 %, and 15 % nano-curcumin (Zein/nCUR 5, 10, and 15 % NFs), and examining their physicochemical and biological properties. This study aims to explore the potential of these nanofibers in macrophage (MØ) polarization and wound healing. Methods We assessed the survival of RAW264.7 cells cultured on Zein/nCUR 5, 10, and 15 % NFs using the MTT assay. To evaluate MØ polarization, we measured the expression of iNOS and Arg-1 genes in MØs cultured on Zein/nCUR 10 % NFs through real-time PCR. Furthermore, we examined the nanofibers' impact on pro-inflammatory cytokine expression (IL-1β, IL-6, TNF-α) in MØs via real-time PCR. The wound healing efficacy of Zein/nCUR 10 % NFs was tested on 54 male rats with full-thickness wounds, with assessments conducted on days 3, 7, and 14. Wound closure, re-epithelialization, and collagen secretion were evaluated through photographic analysis and tissue staining. Statistical analyses were performed using GraphPad Prism 6, with significance set at p < 0.05. Results Zein/nCUR 10 % NFs significantly enhanced the survival of RAW264.7 cells compared to other groups. They also markedly reduced iNOS expression and increased Arg-1 expression, indicating successful polarization of M1 to M2 MØs. Additionally, these nanofibers decreased the expression of IL-1β, IL-6, and TNF-α, and significantly improved wound closure, re-epithelialization, and collagen deposition compared to control and Zein groups. Conclusions This study demonstrates that Zein/nCUR 10 % NFs effectively polarize MØs from M1 to M2, significantly enhancing wound healing, thus offering a promising therapeutic approach for improved wound care.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
2
|
Yu DG, He W, He C, Liu H, Yang H. Versatility of electrospun Janus wound dressings. Nanomedicine (Lond) 2025; 20:271-278. [PMID: 39716850 PMCID: PMC11852743 DOI: 10.1080/17435889.2024.2446139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024] Open
Abstract
Electrospun nanofibers produced through single-fluid blending processes have successfully demonstrated their potential as highly effective wound dressings. However, electrospun Janus nanofibers, in which various chambers can be designed to load different active pharmaceutical ingredients into different polymeric matrices, are further exhibiting their versatility for promoting wound healing. This commentary declares that wound dressings always need multiple functional performances to promote wound healing. Janus nanofibers have their unique advantages, with different parts interacting with their environments, thereby providing a versatile platform for developing novel wound dressings. Two recent examples, each with a different preparation strategy for developing novel wound dressings, are discussed, and the promising future of Janus nanofibers in wound dressing applications is highlighted.
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei He
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Cui He
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Haisong Yang
- Department of Orthopedics, 411 hospital, Shanghai University, Shanghai, China
| |
Collapse
|
3
|
Moharrami Kasmaie F, Mehdinezhad Roshan M, Nasiry D, Abdollahifar MA, Kazemi Ashtiani M, Erfanian S, Zarkesh I, Mazaheri Meybodi A, Piryaei A. Fabrication of curcumin-incorporated human amniotic membrane extracellular matrix-derived scaffold to enhance full-thickness wound healing in diabetic rats. Histochem Cell Biol 2024; 163:10. [PMID: 39589526 DOI: 10.1007/s00418-024-02335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/27/2024]
Abstract
The multifactorial nature of diabetic wounds necessitates a mixed approach for successful treatment. Compensation of degenerated wound tissue extracellular matrix (ECM) and application of anti-inflammatory and antioxidant agents have been shown to be promising. Here, an attempt was made to fabricate a biocompatible wound dressing from curcumin-incorporated human amniotic membrane (HAM) ECM-derived scaffold to accelerate diabetic wound healing in rats. Therefore, after inducing diabetes, an excisional ischemic wound was created on rat skin, then treatments were administered for a period of 21 days. The main groups were the diabetic animals that received an engraftment of HAM scaffold (HAMS group) and the curcumin-incorporated HAMS (HAMS/β/C group). Evaluation at post-wounding days 7, 14, and 21 indicated that the parameters related to regeneration, including wound closure, volume of new epidermis and dermis, proliferating cells, fibroblasts, blood vessels, collagen deposition, and tensile strength, as well as transcripts of Vegf, bFgf, and Tgf-β genes of the healed wound in both HAMS and HAMS/β/C groups were considerably greater than those of the diabetic group. Conversely, the presence of inflammatory cells, i.e., neutrophils and macrophages, and the transcripts of Tnf-α and Il-1β showed a dramatic decrease in the treated groups relative to the diabetic group. Finally, compared to the HAMS group, considerable differences were found with the HAMS/β/C group in almost all evaluated parameters. Overall, these results suggest that using the complementary or synergistic effects of curcumin and HAMS could be a promising approach to improve diabetic wound healing.
Collapse
Affiliation(s)
- Farshad Moharrami Kasmaie
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Mehdi Mehdinezhad Roshan
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Davood Nasiry
- Department of Preclinical, Amol Campus of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeideh Erfanian
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ibrahim Zarkesh
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azadeh Mazaheri Meybodi
- Department of Psychiatry, School of Medicine, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Poornima G, Deepa M, Devadharshini M, Gopan G, Mani M, Kannan S. In-situ synthesis and evaluation of anti-bacterial efficacy and angiogenesis of curcumin encapsulated lipogel dermal patch for wound healing applications. BIOMATERIALS ADVANCES 2024; 164:213989. [PMID: 39126901 DOI: 10.1016/j.bioadv.2024.213989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/18/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
The development of synthetic hydrogels as a dermal patch offers unique advantage of providing moist environment around the wound site. The incorporation of curcumin in hydrogel plays a significant role in the healing process of chronic wounds. The present investigation aims to develop nano-formulated curcumin-fused lipogel to impart the dual advantages of sustained drug release and enhanced wound healing ability. The wound healing behaviour of the prepared lipogel has been assessed through series of techniques namely DPPH assay and bacterial inhibitory efficacy through the Kirby Bauer assay against E. coli and S. aureus. Further, the promotion of angiogenesis has been determined through an in-ovo CAM assay. The results obtained from the investigation revealed the enhanced solubility of curcumin in liposome formulation. Moreover, the encapsulation of curcumin in liposomes facilitated prolonged drug release and better antibacterial efficacy against the tested bacterial stains. The developed hydrogel also displayed good adhesion and water retention ability, which is an important prerequisite for better wound healing ability.
Collapse
Affiliation(s)
- Govindaraj Poornima
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605 014, India
| | - Murugan Deepa
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605 014, India
| | - Mohan Devadharshini
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605 014, India
| | - Gopika Gopan
- Department of Microbiology, Pondicherry University, Puducherry-605 014, India
| | - Maheswaran Mani
- Department of Microbiology, Pondicherry University, Puducherry-605 014, India
| | - S Kannan
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry-605 014, India.
| |
Collapse
|
5
|
Islam MZ, Akter J, Hossain MA, Islam MS, Islam P, Goswami C, Nguyen HTT, Miyamoto A. Anti-Inflammatory, Wound Healing, and Anti-Diabetic Effects of Pure Active Compounds Present in the Ryudai Gold Variety of Curcuma longa. Molecules 2024; 29:2795. [PMID: 38930859 PMCID: PMC11206846 DOI: 10.3390/molecules29122795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Turmeric (Curcuma longa) contains curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). Nevertheless, curcumin is the most researched active ingredient for its numerous pharmacological effects. We investigated the impact of these curcuminoids found in Ryudai gold, an approved cultivar of Curcuma longa, on wound healing, inflammation, and diabetes. Sub-planter injections of carrageenan induced acute paw inflammation in rats. The wound-healing ability of 1% curcuminoids was examined by making a 6 mm round wound on the shaved dorsum of the mice with a biopsy punch. A single intraperitoneal injection of streptozotocin (50 mg/kg) was used to induce diabetes in mice. Curcuminoids at a dose rate of 100 mg/kg body weight were used with feed and as a gastric gavage to treat diabetes and inflammation in experimental animals. Paw thickness was measured at 1, 3, and 6 h following carrageenan injection. After three hours, mean paw volume was 58% in carrageenan-injected mice, which was 35%, 37%, and 31% in the curcumin, DMC, and BDMC groups, respectively. Histopathology of the paw tissue demonstrated severe infiltration of inflammatory cells and thickening of the dermis, which were remarkably improved by the curcuminoids. The wound-healing abilities were significantly higher in the curcumin- (95.0%), DMC- (93.17%), and BDMC-treated (89.0%) groups, in comparison to that of the control (65.09%) group at day nine. There were no significant differences in wound-healing activity among the groups treated with 1% curcuminoids throughout the study. Streptozotocin-induced diabetes was characterized by an increased blood glucose (552.2 mg/dL) and decreased body weight (31.2 g), compared to that of the control rats (145.6 mg/dL and 46.8 g blood glucose and body weight, respectively). It also caused an increase in serum alanine aminotransferase (ALT; 44.2 U/L) and aspartate aminotransferase (AST; 55.8 U/L) compared to that of the control group (18.6 U/L and 20.1 U/L, respectively). Histopathological examination of the liver showed that diabetes caused hepatic cellular necrosis, congestion of the central vein, and parenchymatous degeneration. However, all three curcuminoids significantly decreased blood glucose levels, ALT, and AST and improved the histopathological score of the liver. These results evidenced that not only curcumin but also DMC and BDMC have potent anti-inflammatory, wound healing, and anti-diabetic efficacy, and the Ryudai gold variety of turmeric could be used as a functional food supplement.
Collapse
Affiliation(s)
- Md Zahorul Islam
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.S.I.); (P.I.)
| | - Jesmin Akter
- Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan;
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Md Amzad Hossain
- Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan;
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Md Shafiqul Islam
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.S.I.); (P.I.)
| | - Purba Islam
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.S.I.); (P.I.)
| | - Chayon Goswami
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Ha Thi Thanh Nguyen
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy Crossing, Gia Lam District, Hanoi 131000, Vietnam;
| | - Atsushi Miyamoto
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan;
| |
Collapse
|
6
|
Sharifi Razavi A, Mohajerani F, Niksolat F, Karimi N. Efficacy of topical curcumin on mild to moderate carpal tunnel syndrome: a randomized double-blind, placebo-controlled clinical trial. PAIN MEDICINE (MALDEN, MASS.) 2024; 25:327-333. [PMID: 38281082 DOI: 10.1093/pm/pnae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/29/2024]
Abstract
OBJECTIVES Recently, there has been a renewed interest in traditional medicine for carpal tunnel syndrome (CTS). Curcumin has been reported as an agent with antioxidant, anti-inflammatory, analgesic, and neuroprotective attributes. This study is one of the first investigations to assess the effect of curcumin gel on CTS. METHODS This study is a prospective, 8-week, randomized, placebo-controlled, parallel-group clinical trial. A total of 70 patients with CTS were analyzed. The intervention group (n = 35) received a topical curcumin gel and a night wrist splint and the control group (n = 35) received a placebo gel and a night wrist splint for 8 weeks. The primary outcome was the assessment of the symptom severity scale (SSS) and functional status scale (FSS) of the participants using the Boston Carpal Tunnel Questionnaire (BCTQ) after 8 weeks. In addition, all participants were evaluated by electrodiagnostic (EDX) test at baseline and after 8 weeks. RESULTS The mean scores of SSS demonstrated a significant decrease in the curcumin group compared to the placebo group; P-value= 0.021. The mean change score of SSS after the intervention was 12.45 ± 8.18 in curcumin and 3.28 ± 7.06 in the placebo group; P-value = 0.0001 and the mean change score of FSS were 6.24 ± 4.91 and 2.31 ± 4.95 in curcumin and placebo groups, respectively; P-value = 0.002. However, the EDX study showed no significant changes in both groups. CONCLUSIONS It seems that curcumin gel could be effective in the improvement of the symptom severity and daily activity of patients with CTS.
Collapse
Affiliation(s)
- Athena Sharifi Razavi
- Department of Neurology, Clinical Research Development Unit of Bou Ali Sina Hospital, Mazandaran University of Medical Sciences, Sari, 4815838477, Iran
| | - Fatemeh Mohajerani
- School of Medicine, Clinical Research Development Unit of Bou Ali Sina Hospital, Mazandaran University of Medical Sciences, Sari, 4815838477, Iran
| | - Fatemeh Niksolat
- Department of Internal Medicine and Rheumatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4816633131, Iran
| | - Narges Karimi
- Department of Neurology, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, 4815838477, Iran
| |
Collapse
|
7
|
WU J, DENG L, YIN L, MAO Z, GAO X. Curcumin promotes skin wound healing by activating Nrf2 signaling pathways and inducing apoptosis in mice. Turk J Med Sci 2023; 53:1127-1135. [PMID: 38812993 PMCID: PMC10763766 DOI: 10.55730/1300-0144.5678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/26/2023] [Accepted: 09/17/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Curcumin may have potential as a therapy for wound healing, but the underlying mechanism remains unclear. It is not known whether curcumin can promote wound healing by activating Nrf2 signaling pathway and inducing apoptosis. This study determined the role of Nrf2 signaling pathway and apoptosis in curcumin-promoting skin wound healing. Materials and methods The full-thickness skin defect model of mice was made and randomly divided into a control group and a curcumin group. The mice in the curcumin group and in the control group received respectively a daily topical treatment of Vaseline cream with or without 5 mg curcumin. The wound healing of mice was observed daily. The mice in two groups were killed respectively on postinjury days 3, 7, and 14, and the wound tissues were collected, with 5 mice in each group. Pathological change and formation of collagen fibers were observed by HE and Masson staining respectively. The expression of caspase-3 was observed by immunohistochemistry. Western blot was used to examine the protein levels of Nrf2 and HO-1, and ELISA assay and colorimetry assay were used to check the contents of ROS, MDA, SOD, and GSH. Results The wound healing rates of curcumin group were higher than those of control group (p < 0.05), and the pathological changes were also significantly better than those in the control group (p < 0.05). Collagen fiber synthesis in curcumin group was higher than that in control group (p < 0.05). Moreover, the expression of caspase-3 in curcumin group was higher than that in control group on 7th day post wound (p < 0.05). Furthermore, the levels of ROS and MDA in curcumin were lower than those in control group (p < 0.05), and the level of Nrf2, HO-1, SOD and GSH were higher than those in control group (p < 0.05). Conclusion Curcumin improves skin wound healing by activating the Nrf2 signaling pathway and inducing apoptosis in mice.
Collapse
Affiliation(s)
- Junli WU
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan,
China
| | - Li DENG
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan,
China
| | - Ling YIN
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan,
China
| | - Zhirong MAO
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan,
China
| | - Xiaoqing GAO
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan,
China
| |
Collapse
|
8
|
Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154824. [PMID: 37119762 DOI: 10.1016/j.phymed.2023.154824] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Every day the skin is constantly exposed to several harmful factors that induce oxidative stress. When the cells are incapable to maintain the balance between antioxidant defenses and reactive oxygen species, the skin no longer can keep its integrity and homeostasis. Chronic inflammation, premature skin aging, tissue damage, and immunosuppression are possible consequences induced by sustained exposure to environmental and endogenous reactive oxygen species. Skin immune and non-immune cells together with the microbiome are essential to efficiently trigger skin immune responses to stress. For this reason, an ever-increasing demand for novel molecules capable of modulating immune functions in the skin has risen the level of their development, particularly in the field of natural product-derived molecules. PURPOSE In this review, we explore different classes of molecules that showed evidence in modulate skin immune responses, as well as their target receptors and signaling pathways. Moreover, we describe the role of polyphenols, polysaccharides, fatty acids, peptides, and probiotics as possible treatments for skin conditions, including wound healing, infection, inflammation, allergies, and premature skin aging. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Science Direct, and Google Scholar. The search terms used included "Skin", "wound healing", "natural products", "skin microbiome", "immunomodulation", "anti-inflammatory", "antioxidant", "infection", "UV radiation", "polyphenols", "polysaccharides", "fatty acids", "plant oils", "peptides", "antimicrobial peptides", "probiotics", "atopic dermatitis", "psoriasis", "auto-immunity", "dry skin", "aging", etc., and several combinations of these keywords. RESULTS Natural products offer different solutions as possible treatments for several skin conditions. Significant antioxidant and anti-inflammatory activities were reported, followed by the ability to modulate immune functions in the skin. Several membrane-bound immune receptors in the skin recognize diverse types of natural-derived molecules, promoting different immune responses that can improve skin conditions. CONCLUSION Despite the increasing progress in drug discovery, several limiting factors need future clarification. Understanding the safety, biological activities, and precise mechanisms of action is a priority as well as the characterization of the active compounds responsible for that. This review provides directions for future studies in the development of new molecules with important pharmaceutical and cosmeceutical value.
Collapse
Affiliation(s)
- A Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - P M Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - F K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
9
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
10
|
Liu Y, Mo J, Liang F, Jiang S, Xiong J, Meng X, Mo Z. Pien-tze-huang promotes wound healing in streptozotocin-induced diabetes models associated with improving oxidative stress via the Nrf2/ARE pathway. Front Pharmacol 2023; 14:1062664. [PMID: 36713837 PMCID: PMC9878590 DOI: 10.3389/fphar.2023.1062664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
Diabetic foot ulcers are a serious complication of diabetes, with high mortality and a lack of effective clinical treatment, which leads to a considerable financial burden. Pien-Tze-Huang (PZH) is a Chinese traditional medicine with a long history that has been found to be an effective and convenient treatment for inflammatory diseases such as skin abscesses and ulcers. In this study, we assessed the effects of PZH on diabetic wounds and the underlying mechanisms. The wounds were established on the backs of streptozotocin-induced type 1 diabetic rats and type 2 diabetic mouse models. We found that PZH treatment used locally or by gavage significantly promoted wound healing, accelerated re-epithelialization and vasculature in the wound tissue, upregulated the expression of the growth factors VEGF-A, PDGF, and EGF, and activated the Nrf2/ARE pathway in the wound tissue. In vitro assays showed that PZH improved the proliferation, migration and angiogenic function of human umbilical vein endothelial cells (HUVECs) cultured in palmitic acid, reduced the expression of the apoptotic proteins p53, Bax, and cleaved-caspase3, and activated Nrf2/ARE signaling; however, these protective effects were abrogated after Nrf2 was knocked down by specific siRNA. In addition, the levels of the serum inflammatory cytokines IL-1β, TNF-α, and IL-6 were reduced after PZH gavage treatment. In conclusion, the positive role of PZH in diabetic wound healing might be related to the activation of the Nrf2/ARE pathway to regulate the level of oxidative stress in vivo and increase the expression of growth factors to improve angiogenesis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, Hunan, China
| | - Jiake Mo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, Hunan, China
| | - Fang Liang
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, Hunan, China
| | - Siwei Jiang
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, Hunan, China
| | - Jing Xiong
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, Hunan, China
| | - Xubiao Meng
- Department of Endocrinology, Haikou people’s Hospital & Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| | - Zhaohui Mo
- Department of Endocrinology, Third Xiangya Hospital of Central South University and Diabetic Foot Research Center of Central South University, Changsha, Hunan, China,*Correspondence: Zhaohui Mo,
| |
Collapse
|
11
|
Agharazi M, Gazerani S, Huntington MK. Topical Turmeric Ointment in the Treatment of Diabetic Foot Ulcers: A Randomized, Placebo-Controlled Study. INT J LOW EXTR WOUND 2022:15347346221143222. [PMID: 36514270 DOI: 10.1177/15347346221143222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic foot is a serious complication of diabetes which has significant medical and socioeconomic impacts. Turmeric is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin is the main ingredient presents in turmeric and responsible for its yellow color. We report here a randomized, placebo-controlled investigation into the effectiveness of topical turmeric ointment in the treatment of diabetic foot ulcers. Seventy-six patients enrolled in the study. They were randomly divided into two groups, one of which received topical turmeric ointment and the other received placebo. Preparations were applied twice daily after irrigation of the wound by normal saline and dressed. Image analysis software was used to evaluate photographs of the ulcers and quantify the difference between treatment and placebo groups. Topical turmeric ointment demonstrated statistically significant reduction (p < .001) in the size of diabetic ulcers at five weeks compared to placebo, independently of fasting blood sugar and HbA1C levels. Turmeric ointment may be an effective treatment for diabetic foot ulcers.
Collapse
Affiliation(s)
- Mohsen Agharazi
- Nursing School, 435901Saveh University of Medical Sciences, Saveh, Iran
| | - Sasan Gazerani
- Department of Physiology, 435901Saveh University of Medical Sciences, Saveh, Iran
| | - Mark Kenneth Huntington
- The Center for Family 12323Medicine, University of South Dakota, Sanford School of Medicine, Sioux Falls, USA
| |
Collapse
|
12
|
Kumari A, Raina N, Wahi A, Goh KW, Sharma P, Nagpal R, Jain A, Ming LC, Gupta M. Wound-Healing Effects of Curcumin and Its Nanoformulations: A Comprehensive Review. Pharmaceutics 2022; 14:2288. [PMID: 36365107 PMCID: PMC9698633 DOI: 10.3390/pharmaceutics14112288] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 08/13/2023] Open
Abstract
Wound healing is an intricate process of tissue repair or remodeling that occurs in response to injury. Plants and plant-derived bioactive constituents are well explored in the treatment of various types of wounds. Curcumin is a natural polyphenolic substance that has been used since ancient times in Ayurveda for its healing properties, as it reduces inflammation and acts on several healing stages. Several research studies for curcumin delivery at the wound site reported the effectiveness of curcumin in eradicating reactive oxygen species and its ability to enhance the deposition of collagen, granulation tissue formation, and finally, expedite wound contraction. Curcumin has been widely investigated for its wound healing potential but its lower solubility and rapid metabolism, in addition to its shorter plasma half-life, have limited its applications in wound healing. As nanotechnology has proven to be an effective technique to accelerate wound healing by stimulating appropriate mobility through various healing phases, curcumin-loaded nanocarriers are used for targeted delivery at the wound sites. This review highlights the potential of curcumin and its nanoformulations, such as liposomes, nanoparticles, and nano-emulsions, etc. in wound healing. This paper emphasizes the numerous biomedical applications of curcumin which collectively prepare a base for its antibiofilm and wound-healing action.
Collapse
Affiliation(s)
- Amrita Kumari
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Neha Raina
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Abhishek Wahi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Pratibha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Riya Nagpal
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Atul Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Madhu Gupta
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| |
Collapse
|
13
|
Awasthi A, Vishwas S, Gulati M, Corrie L, Kaur J, Khursheed R, Alam A, Alkhayl FF, Khan FR, Nagarethinam S, Kumar R, Arya K, Kumar B, Chellappan DK, Gupta G, Dua K, Singh SK. Expanding arsenal against diabetic wounds using nanomedicines and nanomaterials: Success so far and bottlenecks. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Ayadilord M, Saharkhiz M, Naseri M, Emadian Razavi F. Expression of immunomodulatory and tissue regenerative biomarkers in human dental pulp derived-mesenchymal stem cells treated with curcumin: an in vitro study. Mol Biol Rep 2022; 49:4411-4420. [PMID: 35301656 DOI: 10.1007/s11033-022-07278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Human Dental pulp derived-mesenchymal stem cells (hDP-MSCs) have the capability of selfrenewal, multipotency, as well as immunosuppressive properties. They are ideal candidates for regenerating damaged dental tissue and treating inflammation-related diseases. However, methods (such as genetic variation) to improve the immunomodulatory and regenerative efficiency of MSCs in different diseases still need to be developed. Curcumin (CUR) is known for its broad applications in regenerative medicine and the treatment of inflammatory disorders via its anti-inflammatory and anti-oxidant effects. This study was conducted to investigate the effect and underlying mechanisms of CUR on the immunomodulatory and regenerative function of hDP-MSCs and whether treating these cells with CUR can improve therapeutic efficacy. METHODS AND RESULTS hDP-MSCs were isolated from dental pulp and then treated with CUR. Cell viability rate was observed in hDP-MSCs after treatment of CUR by MTT assay. Real-time quantitative (RT-PCR) was applied to estimate the expression of immunomodulatory and regenerative genes after treatment of CUR. The RT-PCR results showed that VEGF-A and STAT3 markers were up-regulated while HLA-G5 and VCAM-1 markers were down-regulated by CUR (20 µM) treatment in hDP-MSCs (P < 0.001). Besides, this research indicated that there were no significant changes in the expressions of RelA and DSPP after 48 h (P = 0.33, P = 1). CONCLUSION Our findings demonstrate that CUR can enhance the immunomodulatory and regenerative effects of hDP-MSCs and improve their therapeutic efficacy. These findings can give an understanding of the mechanism for improving restorative and immunomodulatory activity in hDP-MSCs by curcumin.
Collapse
Affiliation(s)
- Malaksima Ayadilord
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mansoore Saharkhiz
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Dental Research Center, Department of Prosthodontics, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
15
|
Mani S, Swargiary G, Ralph SJ. Targeting the redox imbalance in mitochondria: A novel mode for cancer therapy. Mitochondrion 2021; 62:50-73. [PMID: 34758363 DOI: 10.1016/j.mito.2021.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Changes in reactive oxygen species (ROS) levels affect many aspects of cell behavior. During carcinogenesis, moderate ROS production modifies gene expression to alter cell function, elevating metabolic activity and ROS. To avoid extreme ROS-activated death, cancer cells increase antioxidative capacity, regulating sustained ROS levels that promote growth. Anticancer therapies are exploring inducing supranormal, cytotoxic oxidative stress levels either inhibiting antioxidative capacity or promoting excess ROS to selectively destroy cancer cells, triggering mechanisms such as apoptosis, autophagy, necrosis, or ferroptosis. This review exemplifies pro-oxidants (natural/synthetic/repurposed drugs) and their clinical significance as cancer therapies providing revolutionary approaches.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Stephen J Ralph
- School of Medical Science, Griffith University, Southport, Australia.
| |
Collapse
|
16
|
|
17
|
Li Y, Zhao S, der Merwe LV, Dai W, Lin C. Efficacy of curcumin for wound repair in diabetic rats/mice: a systematic review and meta-analysis of preclinical studies. Curr Pharm Des 2021; 28:187-197. [PMID: 34139977 DOI: 10.2174/1381612827666210617122026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/08/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Curcumin possesses multiple bioactivities that have beneficial effects on diabetic foot ulcers. Herein, we aimed to conduct a systematic preclinical review of 9 studies including a total of 262 animals, to assess the possible mechanisms of curcumin for wound healing in diabetic animals. METHODS Five databases were searched from inception to May 12, 2020; Rev-Man 5.3 software was applied for data analyses. Cochrane Collaboration's tool 10-item checklist was used to evaluate the methodological quality, and data revealed scores of risk of bias ranging from 2 to 5. RESULTS Meta-analysis indicated that curcumin had significant effects on wound healing rate and blood vessel density when compared with control (P < 0.05). The wound regeneration properties of curcumin for diabetic wounds are thought to mainly work through the possible mechanisms of antioxidation, enhanced cell proliferation, increased collagen formation, and angiogenesis. However, the anti-inflammatory effect on wounds in diabetic animals remains controversial. CONCLUSIONS The findings indicate that more randomized controlled trials should be pursued to obtain more reliable results regarding inflammatory response. Overall, curcumin might be a probable candidate for diabetic foot ulcers and may contribute to future clinical trials.
Collapse
Affiliation(s)
- Yuan Li
- Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Sheng Zhao
- Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Leanne Van der Merwe
- School of International Studies, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wentong Dai
- Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Cai Lin
- Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
18
|
Tariq M, Tahir HM, Butt SA, Ali S, Ahmad AB, Raza C, Summer M, Hassan A, Nadeem J. Silk derived formulations for accelerated wound healing in diabetic mice. PeerJ 2021; 9:e10232. [PMID: 33510964 PMCID: PMC7798629 DOI: 10.7717/peerj.10232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The present study aimed to prepare effective silk derived formulations in combination with plant extract (Aloe vera gel) to speed up the wound healing process in diabetic mice. METHODS Diabetes was induced in albino mice by using alloxan monohydrate. After successful induction of diabetes in mice, excision wounds were created via biopsy puncture (6 mm). Wound healing effect of silk sericin (5%) and silk fibroin (5%) individually and in combination with 5% Aloe vera gel was evaluated by determining the percent wound contraction, healing time and histological analysis. RESULTS The results indicated that the best biocompatible silk combination was of 5% silk fibroin and 5% Aloe vera gel in which wounds were healed in 13 days with wound contraction: 98.33 ± 0.80%. In contrast, the wound of the control group (polyfax) healed in 19 day shaving 98.5 ± 0.67% contraction. Histological analysis revealed that the wounds which were treated with silk formulations exhibited an increased growth of blood vessels, collagen fibers, and much reduced inflammation. CONCLUSION It can be concluded that a combination of Bombyx mori silk and Aloe vera gel is a natural biomaterial that can be utilized in wound dressings and to prepare more innovative silk based formulations for speedy recovery of chronic wounds.
Collapse
Affiliation(s)
- Muniba Tariq
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | | | - Samima Asad Butt
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Asma Bashir Ahmad
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Chand Raza
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Muhammad Summer
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Ali Hassan
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Junaid Nadeem
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
19
|
Fan J, Liu H, Wang J, Zeng J, Tan Y, Wang Y, Yu X, Li W, Wang P, Yang Z, Dai X. Procyanidin B2 improves endothelial progenitor cell function and promotes wound healing in diabetic mice via activating Nrf2. J Cell Mol Med 2020; 25:652-665. [PMID: 33215883 PMCID: PMC7812287 DOI: 10.1111/jcmm.16111] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
One of the major reasons for the delayed wound healing in diabetes is the dysfunction of endothelial progenitor cells (EPCs) induced by hyperglycaemia. Improvement of EPC function may be a potential strategy for accelerating wound healing in diabetes. Procyanidin B2 (PCB2) is one of the major components of procyanidins, which exhibits a variety of potent pharmacological activities. However, the effects of PCB2 on EPC function and diabetic wound repair remain elusive. We evaluated the protective effects of PCB2 in EPCs with high glucose (HG) treatment and in a diabetic wound healing model. EPCs derived from human umbilical cord blood were treated with HG. The results showed that PCB2 significantly preserved the angiogenic function, survival and migration abilities of EPCs with HG treatment, and attenuated HG‐induced oxidative stress of EPCs by scavenging excessive reactive oxygen species (ROS). A mechanistic study found the protective role of PCB2 is dependent on activating nuclear factor erythroid 2‐related factor 2 (Nrf2). PCB2 increased the expression of Nrf2 and its downstream antioxidant genes to attenuate the oxidative stress induced by HG in EPCs, which were abolished by knockdown of Nrf2 expression. An in vivo study showed that intraperitoneal administration of PCB2 promoted wound healing and angiogenesis in diabetic mice, which was accompanied by a significant reduction in ROS level and an increase in circulating EPC number. Taken together, our results indicate that PCB2 treatment accelerates wound healing and increases angiogenesis in diabetic mice, which may be mediated by improving the mobilization and function of EPCs.
Collapse
Affiliation(s)
- Jiawei Fan
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Hairong Liu
- Experimental Research Center, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jinwu Wang
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Jiang Zeng
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Yi Tan
- Wendy Novak Diabetes Center, Louisville, KY, USA.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Yashu Wang
- Department of Clinical Laboratory, Xinjiang Provincial Corps Hospital of Chinese People's Armed Police, Urumqi, China
| | - Xiaoping Yu
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Wenlian Li
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, China
| | - Peijian Wang
- Department of Cardiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zheng Yang
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
20
|
Zare H, Rezayi M, Aryan E, Meshkat Z, Hatmaluyi B, Neshani A, Ghazvini K, Derakhshan M, Sankian M. Nanotechnology-driven advances in the treatment of diabetic wounds. Biotechnol Appl Biochem 2020; 68:1281-1306. [PMID: 33044005 DOI: 10.1002/bab.2051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Diabetic foot ulcers (DFUs) are chronic severe complications of diabetes disease and remain a worldwide clinical challenge with social and economic consequences. Diabetic wounds can cause infection, amputation of lower extremities, and even death. Several factors including impaired angiogenesis, vascular insufficiency, and bacterial infections result in a delayed process of wound healing in diabetic patients. Treatment of wound infections using traditional antibiotics has become a critical status. Thus, finding new therapeutic strategies to manage diabetic wounds is urgently needed. Nanotechnology has emerged as an efficient approach for this purpose. This review aimed to summarize recent advances using nanotechnology for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Hosna Zare
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Aryan
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behnaz Hatmaluyi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Neshani
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Derakhshan
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Ashrafizadeh M, Javanmardi S, Moradi-Ozarlou M, Mohammadinejad R, Farkhondeh T, Samarghandian S, Garg M. Natural products and phytochemical nanoformulations targeting mitochondria in oncotherapy: an updated review on resveratrol. Biosci Rep 2020; 40:BSR20200257. [PMID: 32163546 PMCID: PMC7133519 DOI: 10.1042/bsr20200257] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are intracellular organelles with two distinct membranes, known as an outer mitochondrial membrane and inner cell membrane. Originally, mitochondria have been derived from bacteria. The main function of mitochondria is the production of ATP. However, this important organelle indirectly protects cells by consuming oxygen in the route of energy generation. It has been found that mitochondria are actively involved in the induction of the intrinsic pathways of apoptosis. So, there have been efforts to sustain mitochondrial homeostasis and inhibit its dysfunction. Notably, due to the potential role of mitochondria in the stimulation of apoptosis, this organelle is a promising target in cancer therapy. Resveratrol is a non-flavonoid polyphenol that exhibits significant pharmacological effects such as antioxidant, anti-diabetic, anti-inflammatory and anti-tumor. The anti-tumor activity of resveratrol may be a consequence of its effect on mitochondria. Multiple studies have investigated the relationship between resveratrol and mitochondria, and it has been demonstrated that resveratrol is able to significantly enhance the concentration of reactive oxygen species, leading to the mitochondrial dysfunction and consequently, apoptosis induction. A number of signaling pathways such as sirtuin and NF-κB may contribute to the mitochondrial-mediated apoptosis by resveratrol. Besides, resveratrol shifts cellular metabolism from glycolysis into mitochondrial respiration to induce cellular death in cancer cells. In the present review, we discuss the possible interactions between resveratrol and mitochondria, and its potential application in cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sara Javanmardi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoumeh Moradi-Ozarlou
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India
| |
Collapse
|