1
|
Koczkowska M, Kostecka A, Zawrzykraj M, Myszczyński K, Skoniecka A, Deptuła M, Tymińska A, Czerwiec K, Jąkalski M, Zieliński J, Crossman DK, Crowley MR, Cichorek M, Skowron PM, Pikuła M, Piotrowski A. Identifying differentiation markers between dermal fibroblasts and adipose-derived mesenchymal stromal cells (AD-MSCs) in human visceral and subcutaneous tissues using single-cell transcriptomics. Stem Cell Res Ther 2025; 16:64. [PMID: 39934849 DOI: 10.1186/s13287-025-04185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stromal cells (AD-MSCs) and fibroblasts are both widely used in regenerative medicine, demonstrating significant potential for personalized cell therapy. A major challenge in their use lies in their high biological similarity, encompassing morphology, differentiation capabilities, and flow cytometric markers, making their distinction difficult. METHODS In our study, we aimed to compare AD-MSCs obtained from two types of adipose tissue, subcutaneous and visceral, alongside skin fibroblasts. Notably, all tissue samples were sourced from the same donors. We analyzed the cells for surface antigens via flow cytometry and conducted single-cell RNA sequencing, followed by verification with quantitative PCR (qPCR). RESULTS Our results revealed phenotypic similarities between the isolated AD-MSCs and dermal fibroblasts, particularly in the expression of markers characteristic of AD-MSCs. However, through in-depth analyses, we identified distinct differences between these cell types. Specifically, we pinpointed 30 genes exhibiting the most significant variations in expression between AD-MSCs and fibroblasts. These genes are associated with biological processes such as tissue remodeling, cell movement, and activation in response to external stimuli. Among them, MMP1, MMP3, S100A4, CXCL1, PI16, IGFBP5, COMP were further validated using qPCR, clearly demonstrating their potential to differentiate between AD-MSCs and fibroblasts. CONCLUSIONS Our scRNA-seq analysis elucidates the transcriptional landscape of AD-MSCs and fibroblasts with unprecedented resolution, highlighting both the population-specific markers and the intrapopulation heterogeneity. Our findings underscore the importance of employing high-resolution techniques for cell identification.
Collapse
Affiliation(s)
| | - Anna Kostecka
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Małgorzata Zawrzykraj
- Division of Clinical Anatomy, Department of Anatomy, Medical University of Gdansk, Gdansk, Poland
| | - Kamil Myszczyński
- Centre of Biostatistics and Bioinformatics Analysis, Medical University of Gdansk, Gdansk, Poland
| | - Aneta Skoniecka
- Division of Embryology, Department of Anatomy, Medical University of Gdansk, Gdansk, Poland
| | - Milena Deptuła
- Division of Embryology, Department of Anatomy, Medical University of Gdansk, Gdansk, Poland
| | - Agata Tymińska
- Division of Embryology, Department of Anatomy, Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Czerwiec
- Division of Clinical Anatomy, Department of Anatomy, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Jąkalski
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Jacek Zieliński
- Department of Surgical Oncology, Transplant Surgery and General Surgery, Medical University of Gdansk, Gdansk, Poland
| | - David K Crossman
- Genomic Core Facility, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael R Crowley
- Genomic Core Facility, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mirosława Cichorek
- Division of Embryology, Department of Anatomy, Medical University of Gdansk, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Michał Pikuła
- Division of Embryology, Department of Anatomy, Medical University of Gdansk, Gdansk, Poland.
| | - Arkadiusz Piotrowski
- 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
2
|
Oliinyk D, Eigenberger A, Felthaus O, Haerteis S, Prantl L. Chorioallantoic Membrane Assay at the Cross-Roads of Adipose-Tissue-Derived Stem Cell Research. Cells 2023; 12:cells12040592. [PMID: 36831259 PMCID: PMC9953848 DOI: 10.3390/cells12040592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
With a history of more than 100 years of different applications in various scientific fields, the chicken chorioallantoic membrane (CAM) assay has proven itself to be an exceptional scientific model that meets the requirements of the replacement, reduction, and refinement principle (3R principle). As one of three extraembryonic avian membranes, the CAM is responsible for fetal respiration, metabolism, and protection. The model provides a unique constellation of immunological, vascular, and extracellular properties while being affordable and reliable at the same time. It can be utilized for research purposes in cancer biology, angiogenesis, virology, and toxicology and has recently been used for biochemistry, pharmaceutical research, and stem cell biology. Stem cells and, in particular, mesenchymal stem cells derived from adipose tissue (ADSCs) are emerging subjects for novel therapeutic strategies in the fields of tissue regeneration and personalized medicine. Because of their easy accessibility, differentiation profile, immunomodulatory properties, and cytokine repertoire, ADSCs have already been established for different preclinical applications in the files mentioned above. In this review, we aim to highlight and identify some of the cross-sections for the potential utilization of the CAM model for ADSC studies with a focus on wound healing and tissue engineering, as well as oncological research, e.g., sarcomas. Hereby, the focus lies on the combination of existing evidence and experience of such intersections with a potential utilization of the CAM model for further research on ADSCs.
Collapse
Affiliation(s)
- Dmytro Oliinyk
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
- Correspondence:
| | - Andreas Eigenberger
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Oliver Felthaus
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, Faculty for Biology and Preclinical Medicine, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
3
|
de Miranda MC, Melo MIAD, Cunha PDS, Gentilini J, Faria JAQA, Rodrigues MA, Gomes DA. Roles of mesenchymal stromal cells in the head and neck cancer microenvironment. Biomed Pharmacother 2021; 144:112269. [PMID: 34794230 PMCID: PMC8630686 DOI: 10.1016/j.biopha.2021.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 09/27/2021] [Indexed: 10/19/2022] Open
Abstract
Head and neck cancer (HNC), a common malignancy worldwide, is associated with high morbidity and mortality rates. Squamous cell carcinoma is the most common HNC type, followed by salivary gland carcinomas, head and neck sarcomas, and lymphomas. The microenvironment of HNCs comprises various cells that regulate tumor development. Recent studies have reported that the tumor microenvironment, which modulates cancer progression, regulates cancer treatment response. However, the presence of different types of stromal cells in cancers is a major challenge to elucidate the role of individual cells in tumor progression. The role of mesenchymal stromal cells (MSCs), which are a component of the tumor microenvironment, in HNC is unclear. The major impediment for characterizing the role of MSCs in cancer progression is the lack of MSC-specific markers and their phenotypic similarity with stromal cells. This review aimed to summarize the latest findings on the role of MSCs in the progression of HNC to improve our understanding of HNC pathophysiology.
Collapse
Affiliation(s)
- Marcelo Coutinho de Miranda
- Biochemistry and Immunology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.
| | - Mariane Izabella Abreu de Melo
- Biochemistry and Immunology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Pricila da Silva Cunha
- Biochemistry and Immunology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Jovino Gentilini
- Biochemistry and Immunology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | - Michele Angela Rodrigues
- Department of General Pathology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Dawidson Assis Gomes
- Biochemistry and Immunology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| |
Collapse
|