1
|
El-Daly SM, Abdelrahman SS, El-Bana MA, Abdel-Latif Y, Medhat D, Morsy SM, Wafay HA. Deciphering the Interplay of the PD-L1/MALT1/miR-200a Axis During Lung Cancer Development. Biotechnol Appl Biochem 2025. [PMID: 39910787 DOI: 10.1002/bab.2724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025]
Abstract
Lung cancer remains a leading cause of cancer-related mortality worldwide. Our study investigates the involvement of the PD-L1/MALAT1/miR-200a-3p axis in lung tumor progression using a murine model of lung carcinogenesis. Lung tumors were induced in rats, which were divided into groups and sacrificed at different stages of tumor development. A histopathological examination was performed to assess tumor progression. Immunohistochemistry was applied to evaluate the expression of Ki-67 and programmed death-ligand 1 (PD-L1). The level of carcinoembryonic antigen (CEA) and expression analysis of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), miR-200a-3p, and zinc finger E-box binding homeobox 1 (ZEB1) were evaluated for each stage of induction. Immunohistochemical analysis demonstrated a progressive upregulation of the proliferative marker Ki-67 and the immune checkpoint protein PD-L1 during the induction process, indicative of enhanced tumor proliferation and immune evasion. Additionally, CEA levels revealed a progressive increase across induction stages, with a significant increase in advanced tumor stages, highlighting its clinical relevance as a biomarker for lung cancer progression. Expression analysis revealed dynamic upregulation of MALAT1 and downregulation of miR-200a during lung tumor induction, which correlated with advanced tumor stages and elevated PD-L1 expression, suggesting that the negative correlation between MALAT1 and miR-200a is involved in the development of lung tumors. ZEB1 expression exhibited a notable increase in the advanced stages of induction, consistent with its association with aggressive lung cancer. Our findings underscore the interplay between molecular pathways involved in lung tumor development and the potential diagnostic and therapeutic implications of the PD-L1/MALAT1/miR-200a-3p axis.
Collapse
Affiliation(s)
- Sherien M El-Daly
- Department of Medical Biochemistry, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Sahar S Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mona A El-Bana
- Department of Medical Biochemistry, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Yasmin Abdel-Latif
- Department of Medical Biochemistry, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October, Giza, Egypt
| | - Dalia Medhat
- Department of Medical Biochemistry, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Safaa M Morsy
- Department of Medical Biochemistry, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hanaa A Wafay
- Department of Medical Biochemistry, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Gouhar SA, Nasr M, Fahmy CA, AboZeid MAM, El-Daly SM. Enhancing the anticancer effect of metformin through nanoencapsulation: Apoptotic induction, inflammatory reduction, and suppression of cell migration in colorectal cancer cells. Arch Pharm (Weinheim) 2025; 358:e2400628. [PMID: 39535448 DOI: 10.1002/ardp.202400628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Colorectal cancer (CRC) continues to be a significant health challenge, necessitating the development of efficient therapeutic strategies. Drug repurposing, which involves the use of existing medications for new purposes, presents a promising opportunity. Metformin, a widely used antidiabetic drug, has demonstrated potential anticancer effects. To enhance its efficacy, we formulated nano-metformin, metformin encapsulated within pectin nanoparticles. Our study aimed to evaluate the superiority of nano-metformin over free metformin in treating CRC. The cytotoxicity of both metformin and nano-metformin on Caco-2 CRC cells was assessed using the MTT assay, revealing a significant dose-dependent inhibition of cell growth using nano-metformin. The anti-inflammatory potential was evaluated by measuring the levels of nitric oxide and the pro-inflammatory cytokines IL-2 and IL-6 following lipopolysaccharide (LPS) induction, and the results revealed that treating LPS-induced cells with nano-metformin significantly reduced the production of these inflammatory mediators. To elucidate the mechanism of cell death, we employed an acridine orange/ethidium bromide staining assay, which revealed the enhancement of apoptotic cell death following treatment with nano-metformin. Additionally, we examined the expression of key apoptotic regulators using real-time qPCR. Nano-metformin, in particular, significantly downregulated the expression of the antiapoptotic markers Bcl-2 and Survivin while upregulating the proapoptotic caspases 3, 7, and 9. The comet assay revealed significant DNA damage induced by treatment with the nano-metformin compared with that in the free form. Moreover, nano-metformin significantly reduced the migration ability of cells. In conclusion, our work revealed the superior efficacy of our formulated nanoform over free metformin, highlighting its potential as a promising therapeutic agent for CRC treatment.
Collapse
Affiliation(s)
- Shaimaa A Gouhar
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cinderella A Fahmy
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Mona A M AboZeid
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
- Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| |
Collapse
|
3
|
El-Daly SM, Gouhar SA, Abdelrahman SS. Inflammation alters the expression pattern of drug transporters during Caco-2 cell stimulation and azoxymethane-induced colon tumorigenesis. J Biochem Mol Toxicol 2024; 38:e23815. [PMID: 39171650 DOI: 10.1002/jbt.23815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Drug transporters play a pivotal role in modulating drug disposition and are subject to alterations under inflammatory conditions. This study aimed to elucidate the intricate expression patterns of drug transporters during both acute and chronic inflammation, which are closely linked to malignant transformation. To investigate acute inflammation, we employed an in vitro model by subjecting Caco-2 cells to various inflammatory stimuli (IL-1β, TNF-α, or LPS) individually or in combination. The successful induction of inflammation was confirmed by robust increases in IL-6 and NO production. Notably, inflamed Caco-2 cells exhibited significantly diminished levels of ABCB1 and ABCG2, while the expression of ABCC2 was upregulated. For chronic inflammation induction in vivo, we employed the well-established AOM/DSS mouse model known for its association with colitis-driven tumorigenesis. Persistent inflammation was effectively monitored throughout the experiment via elevated IL-6 and NO levels. The sequential stages of tumorigenesis were confirmed through Ki-67 immunohistochemistry. Intriguingly, we observed gradual alterations in the expression patterns of the studied drug transporters during stepwise induction, with ABCB1, ABCG2, and ABCC1 showing downregulation and ABCC2 exhibiting upregulation. Immunohistochemistry further revealed dynamic changes in the expression of ABCB1 and ABCC2 during the induction cycles, closely paralleling the gradual increase in Ki-67 expression observed during the development of precancerous lesions. Collectively, our findings underscore the significant impact of inflammation on drug transporter expression, potentially influencing the process of malignant transformation of the colon.
Collapse
Affiliation(s)
- Sherien M El-Daly
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Shaimaa A Gouhar
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Sahar S Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Karam HM, Lotfy DM, A Ibrahim A, Mosallam FM, Abdelrahman SS, Abd-ElRaouf A. A new approach of nano-metformin as a protector against radiation-induced cardiac fibrosis and inflammation via CXCL1/TGF-Β pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6919-6927. [PMID: 38592438 PMCID: PMC11422261 DOI: 10.1007/s00210-024-03052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024]
Abstract
The present work investigates the potential role of metformin nanoparticles (MTF-NPs) as a radio-protector against cardiac fibrosis and inflammation induced by gamma radiation via CXCL1/TGF-β pathway. Lethal dose fifty of nano-metformin was determined in mice, then 21 rats (male albino) were equally divided into three groups: normal control (G1), irradiated control (G2), and MTF-NPs + IRR (G3). The possible protective effect of MTF-NPs is illustrated via decreasing cardiac contents of troponin, C-X-C motif Ligand 1 (CXCL1), tumor growth factor β (TGF-β), protein kinase B (AKT), and nuclear factor-κB (NF-κB). Also, the positive effect of MTF-NPs on insulin-like growth factor (IGF) and platelet-derived growth factor (PDGF) in heart tissues using immunohistochemical technique is illustrated in the present study. Histopathological examination emphasizes the biochemical findings. The current investigation suggests that MTF-NPs might be considered as a potent novel treatment for the management of cardiac fibrosis and inflammation in patients who receive radiotherapy or workers who may be exposed to gamma radiation.
Collapse
Affiliation(s)
- Heba M Karam
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Dina M Lotfy
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ayman A Ibrahim
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4L8, Canada
| | - Farag M Mosallam
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Sahar S Abdelrahman
- Anatomic Pathology Department, Faculty of Veterinary medicine, Cairo University, Cairo, Egypt
| | - Amira Abd-ElRaouf
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
5
|
Imran M, Abida, Eltaib L, Siddique MI, Kamal M, Asdaq SMB, Singla N, Al-Hajeili M, Alhakami FA, AlQarni AF, Abdulkhaliq AA, Rabaan AA. Beyond the genome: MALAT1's role in advancing urologic cancer care. Pathol Res Pract 2024; 256:155226. [PMID: 38452585 DOI: 10.1016/j.prp.2024.155226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Urologic cancers (UCs), which include bladder, kidney, and prostate tumors, account for almost a quarter of all malignancies. Long non-coding RNAs (lncRNAs) are tissue-specific RNAs that influence cell growth, death, and division. LncRNAs are dysregulated in UCs, and their abnormal expression may allow them to be used in cancer detection, outlook, and therapy. With the identification of several novel lncRNAs and significant exploration of their functions in various illnesses, particularly cancer, the study of lncRNAs has evolved into a new obsession. MALAT1 is a flexible tumor regulator implicated in an array of biological activities and disorders, resulting in an important research issue. MALAT1 appears as a hotspot, having been linked to the dysregulation of cell communication, and is intimately linked to cancer genesis, advancement, and response to treatment. MALAT1 additionally operates as a competitive endogenous RNA, binding to microRNAs and resuming downstream mRNA transcription and operation. This regulatory system influences cell growth, apoptosis, motility, penetration, and cell cycle pausing. MALAT1's evaluation and prognosis significance are highlighted, with a thorough review of its manifestation levels in several UC situations and its association with clinicopathological markers. The investigation highlights MALAT1's adaptability as a possible treatment target, providing fresh ways for therapy in UCs as we integrate existing information The article not only gathers current knowledge on MALAT1's activities but also lays the groundwork for revolutionary advances in the treatment of UCs.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Muhammad Irfan Siddique
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Marwan Al-Hajeili
- Department of Medicine, King Abdulaziz University, Jeddah 23624, Saudi Arabia
| | - Fatemah Abdulaziz Alhakami
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Saudi Arabia
| | - Ahmed Farhan AlQarni
- Histopathology Laboratory, Najran Armed Forces Hospital, Najran 66251, Saudi Arabia
| | - Altaf A Abdulkhaliq
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| |
Collapse
|
6
|
Attia HG, El-Morshedy SM, Nagy AM, Ibrahim AM, Aleraky M, Abdelrahman SS, Osman SM, Alasmari SM, El Raey MA, Abdelhameed MF. Citrus clementine Peel Essential Oil Ameliorates Potassium Dichromate-Induced Lung Injury: Insights into the PI3K/AKT Pathway. Metabolites 2024; 14:68. [PMID: 38276303 PMCID: PMC10818323 DOI: 10.3390/metabo14010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Acute Lung Injury (ALI) is a life-threatening syndrome that has been identified as a potential complication of COVID-19. There is a critical need to shed light on the underlying mechanistic pathways and explore novel therapeutic strategies. This study aimed to examine the potential therapeutic effects of Citrus clementine essential oil (CCEO) in treating potassium dichromate (PDC)-induced ALI. The chemical profile of CCEO was created through GC-MS analysis. An in vivo study in rats was conducted to evaluate the effect of CCEO administrated via two different delivery systems (oral/inhalation) in mitigating acute lung injury (ALI) induced by intranasal instillation of PDC. Eight volatile compounds were identified, with monoterpene hydrocarbons accounting for 97.03% of the identified constituents, including 88.84% of D-limonene. CCEO at doses of 100 and 200 mg/kg bw exhibited antioxidant and anti-inflammatory properties. These significant antioxidant properties were revealed through the reduction of malondialdehyde (MDA) and the restoration of reduced glutathione (GSH). In addition, inflammation reduction was observed by decreasing levels of cytokines tumor necrosis factor-α and tumor growth factor-β (TNF-α and TGF-β), along with an increase in phosphatidylinositide-3-kinase (PI3K) and Akt overexpression in lung tissue homogenate, in both oral and inhalation routes, compared to the PDC-induced group. These results were supported by histopathological studies and immunohistochemical assessment of TGF-β levels in lung tissues. These findings revealed that CCEO plays an integral role in relieving ALI induced by intranasal PDC and suggests it as a promising remedy.
Collapse
Affiliation(s)
- Hany G. Attia
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 1988, Saudi Arabia
| | - Suzan M. El-Morshedy
- Clinical Pathology Department, National Liver Institute, Menoufia University, Menoufia 32511, Egypt;
| | - Ahmed M. Nagy
- Department of Animal Reproduction & AI, Veterinary Research Institute, National Research Center, 33 El Bohouth St., Dokki, Cairo 12622, Egypt;
| | - Ammar M. Ibrahim
- Applied Medical Sciences College, Najran University, Najran 55461, Saudi Arabia; (A.M.I.); (S.M.A.)
| | - Mohamed Aleraky
- Department of Clinical Pathology, Al-Azhar University, New Damietta 11651, Egypt;
| | - Sahar S. Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12613, Egypt;
| | - Samir M. Osman
- Department of Pharmacognosy, Faculty of Pharmacy, Oct. 6 University, Giza 12585, Egypt;
| | - Saeed M. Alasmari
- Applied Medical Sciences College, Najran University, Najran 55461, Saudi Arabia; (A.M.I.); (S.M.A.)
| | - Mohamed A. El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Mohamed F. Abdelhameed
- Pharmacology Department, National Research Centre, 33 El Bohouth St., Dokki, Cairo 12622, Egypt;
| |
Collapse
|
7
|
Khidr HY, Hassan NF, Abdelrahman SS, El-Ansary MR, El-Yamany MF, Rabie MA. Formoterol attenuated mitochondrial dysfunction in rotenone-induced Parkinson's disease in a rat model: Role of PINK-1/PARKIN and PI3K/Akt/CREB/BDNF/TrKB axis. Int Immunopharmacol 2023; 125:111207. [PMID: 37956489 DOI: 10.1016/j.intimp.2023.111207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
β2-adrenoreceptors (β2AR have been identified recently as regulators of the α-synuclein gene (SNCA), one of the key milieus endorsed in injury of dopamine neurons in Parkinson's disease (PD). Accumulation of α-synuclein leads to mitochondrial dysfunction via downregulation of mitophagy proteins (PINK-1 and PARKIN) and inhibition of mitochondria biogenesis (PGC-1α) along with an increase in the master inflammatory regulator NF-κB p65 production that provokes neurodegeneration and diminishes neuroprotective signaling pathway (PI3k/Akt/CREB/BDNF). Recently, formoterol exhibited a promising neuroprotective effect against neurodegenerative conditions associated with brain inflammation. Therefore, the present investigation aims to unveil the possible neuroprotective activity of formoterol, β2AR agonist, against rotenone-induced PD in rats. Rats received rotenone (1.5 mg/kg; s.c.) every other day for 3 weeks and cured with formoterol (25 μg/kg/day; i.p.) 1 hr. after rotenone administration, starting from day 11. Formoterol treatment succeeded in upregulating β2-adrenoreceptor expression in PD rats and preserving the function and integrity of dopaminergic neurons as witnessed by enhancement of muscular performance in tests, open field, grip strength-meter, and Rotarod, besides the increment in substantia nigra and striatal tyrosine hydroxylase immunoexpression. In parallel, formoterol boosted mitophagy by activation of PINK1 and PARKIN and preserved mitochondrial membrane potential. Additionally, formoterol stimulated the neuro-survival signaling axis via stimulation of PI3k/pS473-Akt/pS133-CREB/BDNF cascade to attenuate neuronal loss. Noteworthy formoterol reduces neuro-inflammatory status by decreasing NFκBp65 immunoexpression and TNF-α content. Finally, formoterol's potential as a stimulant therapy of mitophagy via the PINK1/PARKIN axis and regulation of mitochondrial biogenesis by increasing PGC-1α to maintain mitochondrial homeostasis along with stimulation of PI3k/Akt/CREB/BDNF axis.
Collapse
Affiliation(s)
- Haneen Y Khidr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - S S Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| |
Collapse
|