1
|
Klabenkova KV, Zhdanova PV, Burakova EA, Bizyaev SN, Fokina AA, Stetsenko DA. A Convenient Oligonucleotide Conjugation via Tandem Staudinger Reaction and Amide Bond Formation at the Internucleotidic Phosphate Position. Int J Mol Sci 2024; 25:2007. [PMID: 38396686 PMCID: PMC10889076 DOI: 10.3390/ijms25042007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Staudinger reaction on the solid phase between an electronodeficit organic azide, such as sulfonyl azide, and the phosphite triester formed upon phosphoramidite coupling is a convenient method for the chemical modification of oligonucleotides at the internucleotidic phosphate position. In this work, 4-carboxybenzenesulfonyl azide, either with a free carboxy group or in the form of an activated ester such as pentafluorophenyl, 4-nitrophenyl, or pentafluorobenzyl, was used to introduce a carboxylic acid function to the terminal or internal internucleotidic phosphate of an oligonucleotide via the Staudinger reaction. A subsequent treatment with excess primary alkyl amine followed by the usual work-up, after prior activation with a suitable peptide coupling agent such as a uronium salt/1-hydroxybenzotriazole in the case of a free carboxyl, afforded amide-linked oligonucleotide conjugates in good yields including multiple conjugations of up to the exhaustive modification at each phosphate position for a weakly activated pentafluorobenzyl ester, whereas more strongly activated and, thus, more reactive aryl esters provided only single conjugations at the 5'-end. The conjugates synthesized include those with di- and polyamines that introduce a positively charged side chain to potentially assist the intracellular delivery of the oligonucleotide.
Collapse
Affiliation(s)
- Kristina V. Klabenkova
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.V.K.); (E.A.B.); (S.N.B.); (A.A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Polina V. Zhdanova
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia;
| | - Ekaterina A. Burakova
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.V.K.); (E.A.B.); (S.N.B.); (A.A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Sergei N. Bizyaev
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.V.K.); (E.A.B.); (S.N.B.); (A.A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alesya A. Fokina
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.V.K.); (E.A.B.); (S.N.B.); (A.A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Dmitry A. Stetsenko
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.V.K.); (E.A.B.); (S.N.B.); (A.A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Erdem A, Eksin E. Zip Nucleic Acid-Based Genomagnetic Assay for Electrochemical Detection of microRNA-34a. BIOSENSORS 2023; 13:bios13010144. [PMID: 36671979 PMCID: PMC9856502 DOI: 10.3390/bios13010144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 05/17/2023]
Abstract
Zip nucleic acid (ZNA)-based genomagnetic assay was developed herein for the electrochemical detection of microRNA-34a (miR-34a), which is related to neurological disorders and cancer. The hybridization between the ZNA probe and miR-34a target was performed in the solution phase; then, the resultant hybrids were immobilized onto the surface of magnetic beads (MBs). After magnetic separation, the hybrids were separated from the surface of MBs and then immobilized on the surface of pencil graphite electrodes (PGEs). In the case of a full-match hybridization, the guanine oxidation signal was measured via the differential pulse voltammetry (DPV) technique. All the experimental parameters that influenced the hybridization efficiency (i.e., hybridization strategy, probe concentration, hybridization temperature, etc.) were optimized. The cross-selectivity of the genomagnetic assay was tested against two different miRNAs, miR-155 and miR-181b, individually as well as in mixture samples. To show the applicability of the ZNA-based genomagnetic assay for miR-34a detection in real samples, a batch of experiments was carried out in this study by using the total RNA samples isolated from the human hepatocellular carcinoma cell line (HUH-7).
Collapse
Affiliation(s)
- Arzum Erdem
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey
- Correspondence: ; Tel.: +90-232-311-5131
| | - Ece Eksin
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey
- Biomedical Device Technology Program, Vocational School of Health Services, Izmir Democracy University, Izmir 35290, Turkey
| |
Collapse
|
3
|
Zhang L, Peng J, Chen J, Xu L, Zhang Y, Li Y, Zhao J, Xiang L, Ge Y, Cheng W. Highly Sensitive Detection of Low-Abundance BRAF V600E Mutation in Fine-Needle Aspiration Samples by Zip Recombinase Polymerase Amplification. Anal Chem 2021; 93:5621-5628. [PMID: 33764743 DOI: 10.1021/acs.analchem.1c00405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Papillary thyroid carcinoma (PTC) is the most common thyroid cancer with high incidence in endocrine tumors, which emphasizes the significance of accurate diagnostics. Still, the commonly used cytological method (fine-needle aspiration (FNA) cytology) and molecular diagnostic methods (such as PCR and sequencing) are limited in terms of diagnostic time, sensitivity, and user-friendliness. In this study, we introduce a novel Zip recombinase polymerase amplification (Z-RPA) strategy to efficiently detect rare mutant alleles in PTC fine-needle aspiration samples, which is sensitive, fast, and simple to manipulate. Using Zip nucleic acid (ZNA) probes to clamp the mutation region, the phi 29 polymerase could selectively displace mismatched ZNA probes and start amplification, while leaving complementary ZNA probes untouched and blocking amplification according to genotype. We demonstrated the good sensitivity and specificity of this strategy with optimized conditions and design, which enabled detection of BRAF V600E mutation in a total 4 ng of genomic DNA within 40 min (≈1 copy). Robust behavior in clinical specimen analysis was also demonstrated. The Z-RPA strategy provides a pragmatic approach to rapidly, sensitively, and easily detect BRAF V600E mutation in clinical fine-needle aspiration samples, which is a promising method for early cancer diagnosis and treatment guideline.
Collapse
Affiliation(s)
- Lutan Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China.,United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen 361000, P. R. China
| | - Jian Peng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Lulu Xu
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yangli Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Ying Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Jie Zhao
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Linguo Xiang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yunsheng Ge
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen 361000, P. R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
4
|
Erdem A, Eksin E. Electrochemical Detection of Solution Phase Hybridization Related to Single Nucleotide Mutation by Carbon Nanofibers Enriched Electrodes. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3377. [PMID: 31623126 PMCID: PMC6829215 DOI: 10.3390/ma12203377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/06/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022]
Abstract
In the present study, a sensitive and selective impedimetric detection of solution-phase nucleic acid hybridization related to Factor V Leiden (FV Leiden) mutation was performed by carbon nanofibers (CNF) modified screen printed electrodes (SPE). The microscopic and electrochemical characterization of CNF-SPEs was explored in comparison to the unmodified electrodes. Since the FV Leiden mutation is a widespread inherited risk factor predisposing to venous thromboembolism, this study herein aimed to perform the impedimetric detection of FV Leiden mutation by a zip nucleic acid (ZNA) probe-based assay in combination with CNF-SPEs. The selectivity of the assay was then examined against the mutation-free DNA sequences as well as the synthetic PCR samples.
Collapse
Affiliation(s)
- Arzum Erdem
- Faculty of Pharmacy, Analytical Chemistry Department, Ege University, Bornova, Izmir 35100, Turkey.
- Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, Bornova, Izmir 35100, Turkey.
| | - Ece Eksin
- Faculty of Pharmacy, Analytical Chemistry Department, Ege University, Bornova, Izmir 35100, Turkey.
- Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, Bornova, Izmir 35100, Turkey.
| |
Collapse
|
5
|
Erdem A, Eksin E. ZNA probe immobilized single-use electrodes for impedimetric detection of nucleic acid hybridization related to single nucleotide mutation. Anal Chim Acta 2019; 1071:78-85. [PMID: 31128758 DOI: 10.1016/j.aca.2019.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022]
Abstract
The development of a low-cost and disposable biosensing technologies has received a great interest of healthcare for the sensitive and reliable detection of single nucleotide mutation related to single nucleotide polymorphisms (SNPs). In the present study, an impedimetric biosensing platform based on zip nucleic acids (ZNA) was developed for the sensitive detection of Factor V Leiden (FV Leiden) mutation. After optimization of experimental parameters, the sequence selective hybridization between ZNA probe and target related to FV Leiden mutation was evaluated via electrochemical impedance spectroscopy technique (EIS) by measuring changes at the charge transfer resistance, Rct. Sensitive and selective impedimetric analysis was performed using carbon nanofiber (CNF) modified screen printed electrodes (SPE) and multi-channel screen printed array of electrodes (MULTIx8 CNF-SPE) resulting in a relatively shorter time in comparison to conventional methods. The selectivity of ZNA probe to mutation-free DNA sequences was also investigated. The applicability of single-use ZNA biosensor was also tested in synthetic PCR samples containing a single base mutation.
Collapse
Affiliation(s)
- Arzum Erdem
- Faculty of Pharmacy, Analytical Chemistry Department, Ege University, Bornova, Izmir, 35100, Turkey; Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, Bornova, Izmir, 35100, Turkey.
| | - Ece Eksin
- Faculty of Pharmacy, Analytical Chemistry Department, Ege University, Bornova, Izmir, 35100, Turkey; Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, Bornova, Izmir, 35100, Turkey
| |
Collapse
|
6
|
Cationic Oligospermine-Oligonucleotide Conjugates Provide Carrier-free Splice Switching in Monolayer Cells and Spheroids. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:483-492. [PMID: 30388622 PMCID: PMC6205332 DOI: 10.1016/j.omtn.2018.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 01/08/2023]
Abstract
We report the evaluation of 18-mer 2′-O-methyl-modified ribose oligonucleotides with a full-length phosphorothioate backbone chemically conjugated at the 5′ end to the oligospermine units (Sn-: n = 5, 15, 20, 25, and 30 [number of spermine units]) as splice switching oligonucleotides (SSOs). These conjugates contain, in their structure, covalently linked oligocation moieties, making them capable of penetrating cells without transfection vector. In cell culture, we observed efficient cytoplasmic and nuclear delivery of fluorescein-labeled S20-SSO by fluorescent microscopy. The SSO conjugates containing more than 15 spermine units induced significant carrier-free exon skipping at nanomolar concentration in the absence and in the presence of serum. With an increasing number of spermine units, the conjugates became slightly toxic but more active. Advantages of these molecules were particularly demonstrated in three-dimensional (3D) cell culture (multicellular tumor spheroids [MCTSs]) that mimics living tissues. Whereas vector-complexed SSOs displayed a drastically reduced splice switching in MCTS compared with the assay in monolayer culture, an efficient exon skipping without significant toxicity was observed with oligospermine-grafted SSOs (S15- and S20-SSOs) transfected without vector. It was shown, by flow cytometry and confocal microscopy, that the fluorescein-labeled S20-SSO was freely diffusing and penetrating the innermost cells of MCTS, whereas the vector-complexed SSO penetrated only the cells of the spheroid’s outer layer.
Collapse
|
7
|
Yanachkov I, Zavizion B, Metelev V, Stevens LJ, Tabatadze Y, Yanachkova M, Wright G, Krichevsky AM, Tabatadze DR. Self-neutralizing oligonucleotides with enhanced cellular uptake. Org Biomol Chem 2018; 15:1363-1380. [PMID: 28074950 DOI: 10.1039/c6ob02576e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is tremendous potential for oligonucleotide (ON) therapeutics, but low cellular penetration due to their polyanionic nature is a major obstacle. We addressed this problem by developing a new approach for ON charge neutralization in which multiple branched charge-neutralizing sleeves (BCNSs) are attached to the internucleoside phosphates of ON by phosphotriester bonds. The BCNSs are terminated with positively charged amino groups, and are optimized to form ion pairs with the neighboring phosphate groups. The new modified ONs can be prepared by standard automated phosphoramidite chemistry in good yield and purity. They possess good solubility and hybridization properties, are not involved in non-standard intramolecular aggregation, have low cytotoxicity, adequate chemical stability, improved serum stability, and above all, display significantly enhanced cellular uptake. Thus, the new ON derivatives exhibit properties that make them promising candidates for the development of novel therapeutics or research tools for modulation of the expression of target genes.
Collapse
Affiliation(s)
- Ivan Yanachkov
- ZATA Pharmaceuticals, Inc., 60 Prescott St., Worcester, MA 01605, USA. and GLSynthesis, Inc., One Innovation Drive, Worcester, MA 01605, USA
| | - Boris Zavizion
- ZATA Pharmaceuticals, Inc., 60 Prescott St., Worcester, MA 01605, USA.
| | - Valeri Metelev
- ZATA Pharmaceuticals, Inc., 60 Prescott St., Worcester, MA 01605, USA. and Department of Chemistry, Moscow State University, Leninskye gory1/40, Moscow 119991, Russian Federation
| | - Laura J Stevens
- ZATA Pharmaceuticals, Inc., 60 Prescott St., Worcester, MA 01605, USA.
| | | | - Milka Yanachkova
- ZATA Pharmaceuticals, Inc., 60 Prescott St., Worcester, MA 01605, USA. and GLSynthesis, Inc., One Innovation Drive, Worcester, MA 01605, USA
| | - George Wright
- GLSynthesis, Inc., One Innovation Drive, Worcester, MA 01605, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA
| | - David R Tabatadze
- ZATA Pharmaceuticals, Inc., 60 Prescott St., Worcester, MA 01605, USA.
| |
Collapse
|
8
|
Nothisen M, Bagilet J, Behr JP, Remy JS, Kotera M. Structure Tuning of Cationic Oligospermine-siRNA Conjugates for Carrier-Free Gene Silencing. Mol Pharm 2016; 13:2718-28. [PMID: 27398779 DOI: 10.1021/acs.molpharmaceut.6b00309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligospermine-siRNA conjugates are able to induce efficient luciferase gene silencing upon carrier-free transfection. These conjugates are readily accessible by a versatile automated chemistry that we developed using a DMT-spermine phosphoramidite reagent. In this article, we used this chemistry to study a wide range of structural modifications of the oligospermine-siRNA conjugates, i.e., variation of conjugate positions and introduction of chemical modifications to increase nuclease resistance. At first we examined gene silencing activity of a series of siRNA-tris(spermine) conjugates with and without chemical modifications in standard carrier assisted conditions. The three spermine units attached at one of the two ends of the sense strand or at the 3'-end of the antisense strand are compatible with gene silencing activity whereas attachment of spermine units at the 5'-end of the antisense strand abolished the activity. 2'-O-Methylated nucleotides introduced in the sense strand are compatible while not in the antisense strand. Thiophosphate links could be used without activity loss at the 3'-end of both strands and at the 5'-end of the sense strand to conjugate oligospermine. Consequently a series of oligospermine-siRNA conjugates containing 15 to 45 spermines units in various configurations were chosen, prepared, and examined in carrier-free conditions. Attachment of 30 spermine units singly at the 5'-end of the sense strand provides the most potent carrier-free siRNA. Longevity of luciferase gene silencing was studied using oligospermine-siRNA conjugates. Five day long efficiency with more than 80% gene expression knockdown was observed upon transfection without vector. Oligospermine-siRNA conjugates targeting cell-constitutive natural lamin A/C gene were prepared. Efficient gene silencing was observed upon carrier-free transfection of siRNA conjugates containing 20 or 30 spermine residues grafted at the 5'-end of the sense strand.
Collapse
Affiliation(s)
- Marc Nothisen
- Laboratoire V-SAT, CAMB, UMR 7199, Université de Strasbourg and CNRS, Faculté de Pharmacie , F-67401 Illkirch, France
| | - Jérémy Bagilet
- Laboratoire V-SAT, CAMB, UMR 7199, Université de Strasbourg and CNRS, Faculté de Pharmacie , F-67401 Illkirch, France
| | - Jean-Paul Behr
- Laboratoire V-SAT, CAMB, UMR 7199, Université de Strasbourg and CNRS, Faculté de Pharmacie , F-67401 Illkirch, France
| | - Jean-Serge Remy
- Laboratoire V-SAT, CAMB, UMR 7199, Université de Strasbourg and CNRS, Faculté de Pharmacie , F-67401 Illkirch, France
| | - Mitsuharu Kotera
- Laboratoire V-SAT, CAMB, UMR 7199, Université de Strasbourg and CNRS, Faculté de Pharmacie , F-67401 Illkirch, France
| |
Collapse
|
9
|
Polyamine-oligonucleotide conjugates: a promising direction for nucleic acid tools and therapeutics. Future Med Chem 2015; 7:1733-49. [PMID: 26424049 DOI: 10.4155/fmc.15.90] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chemical modification and/or the conjugation of small functional molecules to oligonucleotides have significantly improved their biological and biophysical properties, addressing issues such as poor cell penetration, stability to nucleases and low affinity for their targets. Here, the authors review the literature reporting on the biophysical, biochemical and biological properties of one particular class of modification - polyamine-oligonucleotide conjugates. Naturally derived and synthetic polyamines have been grafted onto a variety of oligonucleotide formats, including antisense oligonucleotides and siRNAs. In many cases this has had beneficial effects on their properties such as target hybridization, nuclease resistance, cellular uptake and activity. Polyamine-oligonucleotide conjugation, therefore, represents a promising direction for the further development of oligonucleotide-based therapeutics and tools.
Collapse
|
10
|
Hayashi J, Hamada T, Sasaki I, Nakagawa O, Wada SI, Urata H. Synthesis of novel cationic spermine-conjugated phosphotriester oligonucleotide for improvement of cell membrane permeability. Bioorg Med Chem Lett 2015; 25:3610-5. [PMID: 26149182 DOI: 10.1016/j.bmcl.2015.06.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 11/17/2022]
Abstract
A spermine-conjugated ethyl phosphotriester oligonucleotide was obtained by solid-phase synthesis based on phosphoramidite chemistry. The ethyl phosphotriester linkage was robust to exonuclease digestion and stable in fetal bovine serum. Cell membrane permeability of the spermine-conjugated ethyl phosphotriester oligonucleotide was studied by fluorescence experiments. The effective cell penetrating potency of the spermine-conjugated ethyl phosphotriester oligonucleotide was determined by confocal laser scanning microscopy and measurement of intracellular fluorescence intensity.
Collapse
Affiliation(s)
- Junsuke Hayashi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tomoko Hamada
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ikumi Sasaki
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Osamu Nakagawa
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shun-ichi Wada
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hidehito Urata
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
11
|
Navarro E, Serrano-Heras G, Castaño MJ, Solera J. Real-time PCR detection chemistry. Clin Chim Acta 2014; 439:231-50. [PMID: 25451956 DOI: 10.1016/j.cca.2014.10.017] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 10/09/2014] [Accepted: 10/11/2014] [Indexed: 12/28/2022]
Abstract
Real-time PCR is the method of choice in many laboratories for diagnostic and food applications. This technology merges the polymerase chain reaction chemistry with the use of fluorescent reporter molecules in order to monitor the production of amplification products during each cycle of the PCR reaction. Thus, the combination of excellent sensitivity and specificity, reproducible data, low contamination risk and reduced hand-on time, which make it a post-PCR analysis unnecessary, has made real-time PCR technology an appealing alternative to conventional PCR. The present paper attempts to provide a rigorous overview of fluorescent-based methods for nucleic acid analysis in real-time PCR described in the literature so far. Herein, different real-time PCR chemistries have been classified into two main groups; the first group comprises double-stranded DNA intercalating molecules, such as SYBR Green I and EvaGreen, whereas the second includes fluorophore-labeled oligonucleotides. The latter, in turn, has been divided into three subgroups according to the type of fluorescent molecules used in the PCR reaction: (i) primer-probes (Scorpions, Amplifluor, LUX, Cyclicons, Angler); (ii) probes; hydrolysis (TaqMan, MGB-TaqMan, Snake assay) and hybridization (Hybprobe or FRET, Molecular Beacons, HyBeacon, MGB-Pleiades, MGB-Eclipse, ResonSense, Yin-Yang or displacing); and (iii) analogues of nucleic acids (PNA, LNA, ZNA, non-natural bases: Plexor primer, Tiny-Molecular Beacon). In addition, structures, mechanisms of action, advantages and applications of such real-time PCR probes and analogues are depicted in this review.
Collapse
Affiliation(s)
- E Navarro
- Research Unit, General University Hospital, Laurel s/n, 02006 Albacete, Spain.
| | - G Serrano-Heras
- Research Unit, General University Hospital, Laurel s/n, 02006 Albacete, Spain.
| | - M J Castaño
- Research Unit, General University Hospital, Laurel s/n, 02006 Albacete, Spain.
| | - J Solera
- Internal Medicine Department, General University Hospital, Hermanos Falcó 37, 02006 Albacete, Spain.
| |
Collapse
|
12
|
Abstract
Insufficient pharmacokinetic properties and poor cellular uptake are the main hurdles for successful therapeutic development of oligonucleotide agents. The covalent attachment of various ligands designed to influence the biodistribution and cellular uptake or for targeting specific tissues is an attractive possibility to advance therapeutic applications and to expand development options. In contrast to advanced formulations, which often consist of multiple reagents and are sensitive to a variety of preparation conditions, oligonucleotide conjugates are defined molecules, enabling structure-based analytics and quality control techniques. This review gives an overview of current developments of oligonucleotide conjugates for therapeutic applications. Attached ligands comprise peptides, proteins, carbohydrates, aptamers and small molecules, including cholesterol, tocopherol and folic acid. Important linkage types and conjugation methods are summarized. The distinct ligands directly influence biochemical parameters, uptake mechanisms and pharmacokinetic properties.
Collapse
|
13
|
Cell-penetrating cationic siRNA and lipophilic derivatives efficient at nanomolar concentrations in the presence of serum and albumin. J Control Release 2013; 170:92-8. [PMID: 23639452 DOI: 10.1016/j.jconrel.2013.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 01/22/2023]
Abstract
Despite its considerable interest in human therapy, in vivo siRNA delivery is still suffering from hurdles of vectorization. We have shown recently efficient gene silencing by non-vectorized cationic siRNA. Here, we describe the synthesis and in vitro evaluation of new amphiphilic cationic siRNA. C₁₂-, (C₁₂)₂- and cholesteryl-spermine(x)-siRNA were capable of luciferase knockdown at nanomolar concentrations without vectorization (i.e. one to two orders of magnitude more potent than commercially available cholesteryl siRNA). Moreover, incubation in the presence of serum did not impair their efficiency. Finally, amphiphilic cationic siRNA was pre-loaded on albumin. In A549Luc cells in the presence of serum, these siRNA conjugates were highly effective and had low toxicity.
Collapse
|
14
|
Paris C, Moreau V, Deglane G, Karim L, Couturier B, Bonnet ME, Kedinger V, Messmer M, Bolcato-Bellemin AL, Behr JP, Erbacher P, Lenne-Samuel N. Conjugating phosphospermines to siRNAs for improved stability in serum, intracellular delivery and RNAi-mediated gene silencing. Mol Pharm 2012; 9:3464-75. [PMID: 23148419 DOI: 10.1021/mp300278b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
siRNAs are usually formulated with cationic polymers or lipids to form supramolecular particles capable of binding and crossing the negatively charged cell membrane. However, particles hardly diffuse through tissues when administered in vivo. We therefore are developing cationic siRNAs, composed of an antisense sequence annealed to an oligophosphospermine-conjugated sense strand. Cationic siRNAs have been previously shown to display gene silencing activity in human cell line (Nothisen et al. J. Am. Chem. Soc.2009). We have improved the synthesis, purification and characterization of oligospermine-oligoribonucleotide conjugates which provide cationic siRNAs with enhanced biological activity. We show data supporting their carrier-free intracellular delivery in a molecular, soluble state. Additional results on the relationship between global charge, uptake and silencing activity confirm the requirement for an overall positive charge of the conjugated siRNA in order to enter cells. Importantly, conjugated siRNAs made of natural phosphodiester nucleotides are protected from nuclease degradation by the oligophosphospermine moiety, operate through the RNAi mechanism and mediate specific gene silencing at submicromolar concentration in the presence of serum.
Collapse
Affiliation(s)
- Clément Paris
- Polyplus-tranfection SA, Bioparc, Boulevard S. Brant, Illkirch, 67401, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kedracki D, Safir I, Gour N, Ngo KX, Vebert-Nardin C. DNA–Polymer Conjugates: From Synthesis, Through Complex Formation and Self-assembly to Applications. BIO-SYNTHETIC POLYMER CONJUGATES 2012. [DOI: 10.1007/12_2012_181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Gagnon KT, Watts JK, Pendergraff HM, Montaillier C, Thai D, Potier P, Corey DR. Antisense and antigene inhibition of gene expression by cell-permeable oligonucleotide-oligospermine conjugates. J Am Chem Soc 2011; 133:8404-7. [PMID: 21539318 PMCID: PMC3106116 DOI: 10.1021/ja200312y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Oligonucleotides and their derivatives are a proven chemical strategy for modulating gene expression. However, their negative charge remains a challenge for delivery and target recognition inside cells. Here we show that oligonucleotide-oligospermine conjugates (Zip nucleic acids or ZNAs) can help overcome these shortcomings by serving as effective antisense and antigene agents. Conjugates containing DNA and locked nucleic acid (LNA) oligonucleotides are active, and oligospermine conjugation facilitates carrier-free cell uptake at nanomolar concentrations. Conjugates targeting the CAG triplet repeat within huntingtin (HTT) mRNA selectively inhibit expression of the mutant huntingtin protein. Conjugates targeting the promoter of the progesterone receptor (PR) function as antigene agents to block PR expression. These observations support further investigation of ZNA conjugates as gene silencing agents.
Collapse
Affiliation(s)
- Keith T. Gagnon
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Jonathan K. Watts
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Hannah M. Pendergraff
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | | | - Danielle Thai
- SIGMA Custom Products, Genopole Campus 1, 5 rue Desbruères, 91030 Evry Cedex, France
| | - Pierre Potier
- SIGMA Custom Products, Genopole Campus 1, 5 rue Desbruères, 91030 Evry Cedex, France
| | - David R. Corey
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| |
Collapse
|
17
|
Perche P, Kotera M, Remy JS. MMT, Npeoc-protected spermine, a valuable synthon for the solid phase synthesis of oligonucleotide oligospermine conjugates via guanidine linkers. Bioorg Med Chem 2011; 19:1972-7. [PMID: 21339069 DOI: 10.1016/j.bmc.2011.01.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/26/2011] [Accepted: 01/28/2011] [Indexed: 11/21/2022]
Abstract
Solid phase spermine oligomerization via guanidine linkers was achieved using activated thiourea coupling reaction with primary amino group. Disymmetric spermine synthon was efficiently synthesised in eight steps from spermine. MMT group was used as coupling monitor and resulting oligomeric spermines were conjugated to oligonucleotides.
Collapse
Affiliation(s)
- Phanélie Perche
- Laboratoire de Chimie Génétique, UMR7199 CAMB, CNRS et Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | | | | |
Collapse
|
18
|
Morvan F, Debart F, Vasseur JJ. From anionic to cationic alpha-anomeric oligodeoxynucleotides. Chem Biodivers 2010; 7:494-535. [PMID: 20232324 DOI: 10.1002/cbdv.200900220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- François Morvan
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université Montpellier 1 and Université Montpellier 2, Place Eugène Bataillon, CC1704, FR-34095 Montpellier cedex 5, France
| | | | | |
Collapse
|
19
|
Paris C, Moreau V, Deglane G, Voirin E, Erbacher P, Lenne-Samuel N. Zip nucleic acids are potent hydrolysis probes for quantitative PCR. Nucleic Acids Res 2010; 38:e95. [PMID: 20071749 PMCID: PMC2853127 DOI: 10.1093/nar/gkp1218] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Zip nucleic acids (ZNAs) are oligonucleotides conjugated with cationic spermine units that increase affinity for their target. ZNAs were recently shown to enable specific and sensitive reactions when used as primers for polymerase chain reaction (PCR) and reverse-transcription. Here, we report their use as quantitative PCR hydrolysis probes. Ultraviolet duplex melting data demonstrate that attachment of cationic residues to the 3' end of an oligonucleotide does not alter its ability to discriminate nucleotides nor the destabilization pattern relative to mismatch location in the oligonucleotide sequence. The stability increase provided by the cationic charges allows the use of short dual-labeled probes that significantly improve single-nucleotide polymorphism genotyping. Longer ZNA probes were shown to display reduced background fluorescence, therefore, generating greater sensitivity and signal level as compared to standard probes. ZNA probes thus provide broad flexibility in assay design and also represent an effective alternative to minor groove binder- and locked nucleic-acid-containing probes.
Collapse
Affiliation(s)
| | | | | | | | | | - Nathalie Lenne-Samuel
- *To whom correspondence should be addressed. Tel: +33 3 9040 6180; Fax: +33 3 9040 6181;
| |
Collapse
|
20
|
Kashida H, Ito H, Fujii T, Hayashi T, Asanuma H. Positively charged base surrogate for highly stable "base pairing" through electrostatic and stacking interactions. J Am Chem Soc 2009; 131:9928-30. [PMID: 19583209 DOI: 10.1021/ja9013002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
"Base pairs" of cationic dyes (p-methylstilbazole) were incorporated into oligodeoxyribonucleotides (ODNs). This "base pair" greatly stabilized the duplex through electrostatic and stacking interactions. The melting temperature of modified ODN was higher than those of neutral dyes and native base pairs. Further stabilization of the duplex was observed when the number of cationic dyes increased.
Collapse
Affiliation(s)
- Hiromu Kashida
- Graduate School of Engineering, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8603, Japan
| | | | | | | | | |
Collapse
|
21
|
Hartmann L, Börner HG. Precision polymers: monodisperse, monomer-sequence-defined segments to target future demands of polymers in medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:3425-3431. [PMID: 20882508 DOI: 10.1002/adma.200801884] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
22
|
Lönnberg H. Solid-phase synthesis of oligonucleotide conjugates useful for delivery and targeting of potential nucleic acid therapeutics. Bioconjug Chem 2009; 20:1065-94. [PMID: 19175328 DOI: 10.1021/bc800406a] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Olignucleotide-based drugs show promise as a novel form of chemotherapy. Among the hurdles that have to be overcome on the way of applicable nucleic acid therapeutics, inefficient cellular uptake and subsequent release from endosomes to cytoplasm appear to be the most severe ones. Covalent conjugation of oligonucleotides to molecules that expectedly facilitate the internalization, targets the conjugate to a specific cell-type or improves the parmacokinetics offers a possible way to combat against these shortcomings. Since workable chemistry is a prerequisite for biological studies, development of efficient and reproducible methods for preparation of various types of oligonucleotide conjugates has become a subject of considerable importance. The present review summarizes the advances made in the solid-supported synthesis of oligonucleotide conjugates aimed at facilitating the delivery and targeting of nucleic acid drugs.
Collapse
Affiliation(s)
- Harri Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland.
| |
Collapse
|
23
|
Moreau V, Voirin E, Paris C, Kotera M, Nothisen M, Rémy JS, Behr JP, Erbacher P, Lenne-Samuel N. Zip Nucleic Acids: new high affinity oligonucleotides as potent primers for PCR and reverse transcription. Nucleic Acids Res 2009; 37:e130. [PMID: 19696078 PMCID: PMC2770653 DOI: 10.1093/nar/gkp661] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Most nucleic acid-based technologies rely upon sequence recognition between an oligonucleotide and its nucleic acid target. With the aim of improving hybridization by decreasing electrostatic repulsions between the negatively charged strands, novel modified oligonucleotides named Zip nucleic acids (ZNAs) were recently developed. ZNAs are oligonucleotide–oligocation conjugates whose global charge is modulated by the number of cationic spermine moieties grafted on the oligonucleotide. It was demonstrated that the melting temperature of a hybridized ZNA is easily predictable and increases linearly with the length of the oligocation. Furthermore, ZNAs retain the ability to discriminate between a perfect match and a single base-pair-mismatched complementary sequence. Using quantitative PCR, we show here that ZNAs are specific and efficient primers displaying an outstanding affinity toward their genomic target. ZNAs are particularly efficient at low magnesium concentration, low primer concentrations and high annealing temperatures, allowing to improve the amplification in AT-rich sequences and potentially multiplex PCR applications. In reverse transcription experiments, ZNA gene-specific primers improve the yield of cDNA synthesis, thus increasing the accuracy of detection, especially for genes expressed at low levels. Our data suggest that ZNAs exhibit faster binding kinetics than standard and locked nucleic acid-containing primers, which could explain why their target recognition is better for rare targets.
Collapse
|
24
|
Biological Chemistry: J.-P. Behr Honored / Organic Chemistry: Prize for K. S. Schanze / Theoretical Chemistry: A. I. Boldyrev Awarded. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/anie.200904046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Biologische Chemie: J.-P. Behr geehrt / Organische Chemie: Preis für K. S. Schanze / Theoretische Chemie: A. I. Boldyrev ausgezeichnet. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200904046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Oligonucleotide-polyamine conjugates: influence of length and position of 2'-attached polyamines on duplex stability and antisense effect. Eur J Med Chem 2008; 44:670-7. [PMID: 18617292 DOI: 10.1016/j.ejmech.2008.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/15/2008] [Accepted: 05/19/2008] [Indexed: 11/22/2022]
Abstract
Tethering cationic ligands to oligonucleotides results in zwitterionic molecules with often improved target affinity and better cell membrane permeation. Due to the ideal distance between cationic groups, polyamines are perfect counter ions for oligonucleotides. Using an easy and versatile procedure for attaching ligands to the 2'-position, polyamines were conjugated to distinct terminal and internal positions of oligonucleotides. With polyamines attached to terminal nucleosides, the affinity to complementary DNA or RNA strands increased with growing number of cationic amines. Tethering polyamines to an internal nucleoside of wild type DNA oligonucleotides resulted in a considerable decrease in duplex stability, but in phosphorothioates, no significant decrease was detected. Conjugates exhibited progressively higher target downregulation ability with increasing polyamine chain length in a human melanoma cell culture assay.
Collapse
|
27
|
Voirin E, Behr JP, Kotera M. Versatile synthesis of oligodeoxyribonucleotide-oligospermine conjugates. Nat Protoc 2007; 2:1360-7. [PMID: 17545974 DOI: 10.1038/nprot.2007.177] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A protocol for the rapid, automated synthesis of oligospermine-oligonucleotide sequences is described. To this end, a protected spermine phosphoramidite derivative was synthesized in six steps from spermine and used as the fifth synthon in an oligonucleotide synthesizer. Parameters were optimized to reach greater than 95% coupling yields. Cationic oligonucleotides show enhanced hybridization and strand invasion properties, and hence are an alternative to conventional oligonucleotides for molecular biology, diagnostic and potential therapeutic applications. A multi-gram-scale synthesis of the spermine phosphoramidite allowing several hundred coupling steps takes 2-3 weeks. Oligonucleotide synthesis and purification takes approximately 3 d.
Collapse
Affiliation(s)
- Emilie Voirin
- Polyplus-transfection SA, Bioparc, Boulevard S. Brandt, BP90018, 67401 Illkirch, France
| | | | | |
Collapse
|