1
|
Mangubat-Medina AE, Ball ZT. Triggering biological processes: methods and applications of photocaged peptides and proteins. Chem Soc Rev 2021; 50:10403-10421. [PMID: 34320043 DOI: 10.1039/d0cs01434f] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There has been a significant push in recent years to deploy fundamental knowledge and methods of photochemistry toward biological ends. Photoreactive groups have enabled chemists to activate biological function using the concept of photocaging. By granting spatiotemporal control over protein activation, these photocaging methods are fundamental in understanding biological processes. Peptides and proteins are an important group of photocaging targets that present conceptual and technical challenges, requiring precise chemoselectivity in complex polyfunctional environments. This review focuses on recent advances in photocaging techniques and methodologies, as well as their use in living systems. Photocaging methods include genetic and chemical approaches that require a deep understanding of structure-function relationships based on subtle changes in primary structure. Successful implementation of these ideas can shed light on important spatiotemporal aspects of living systems.
Collapse
Affiliation(s)
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
2
|
Ueki R, Hayashi S, Tsunoda M, Akiyama M, Liu H, Ueno T, Urano Y, Sando S. Nongenetic control of receptor signaling dynamics using a DNA-based optochemical tool. Chem Commun (Camb) 2021; 57:5969-5972. [PMID: 34027523 DOI: 10.1039/d1cc01968f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optochemical tools that can modulate the activity of the target protein provide an opportunity for studying and regulating the related biological processes. Here we present a DNA-based nongenetic optochemical tool that can control the dynamics of growth factor signaling. This photo-caged mimicry of growth factor can be a promising tool for elucidating a linkage between the dynamics of signaling and the resulting biological outcomes, as well as for manipulating cellular functions and the fate of living cells.
Collapse
Affiliation(s)
- Ryosuke Ueki
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shota Hayashi
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masaya Tsunoda
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Momoko Akiyama
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hanrui Liu
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan and Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan and Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
3
|
Jeong S, Kim B, Lau HC, Kim A. Gelatin-Alginate Complexes for EGF Encapsulation: Effects of H-Bonding and Electrostatic Interactions. Pharmaceutics 2019; 11:pharmaceutics11100530. [PMID: 31614977 PMCID: PMC6835588 DOI: 10.3390/pharmaceutics11100530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 01/24/2023] Open
Abstract
Gelatin Type A (GA) and sodium alginate (SA) complexes were explored to encapsulate epidermal growth factor (EGF), and thereby to circumvent its proteolytic degradation upon topical application to chronic wounds. Phase diagrams were constructed based on turbidity as a function of GA to SA ratio and pH. Various GA-SA mixtures were compared for polydispersity index, zeta potential, Z-average, and ATR-FTIR spectra. Trypsin digestion and human dermal fibroblast scratch wound assay were done to evaluate the effects of EGF encapsulation. The onset pH values for coacervation and precipitation were closer together in high molecular weight GA (HWGA)-SA reaction mixtures than in low molecular weight GA (LWGA)-SA, which was attributed to strong H-bonding interactions between HWGA and SA probed by ATR-FTIR. EGF incorporation in both HWGA-SA precipitates and LWGA-SA coacervates below the isoelectric point of EGF, but not above it, suggests the contribution of electrostatic interactions between EGF and SA. EGF encapsulated in LWGA-SA coacervates was effectively protected from trypsin digestion and showed better in vitro scratch wound activity compared to free EGF. LWGA-SA coacervates are suggested as a novel delivery system for topical application of EGF to chronic wounds.
Collapse
Affiliation(s)
- Seonghee Jeong
- College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do 463-400, Korea.
| | - ByungWook Kim
- College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do 463-400, Korea
| | - Hui-Chong Lau
- College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do 463-400, Korea.
| | - Aeri Kim
- College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do 463-400, Korea.
| |
Collapse
|
4
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemical Control of Biological Processes in Cells and Animals. Angew Chem Int Ed Engl 2018; 57:2768-2798. [PMID: 28521066 PMCID: PMC6026863 DOI: 10.1002/anie.201700171] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/06/2017] [Indexed: 12/13/2022]
Abstract
Biological processes are naturally regulated with high spatial and temporal control, as is perhaps most evident in metazoan embryogenesis. Chemical tools have been extensively utilized in cell and developmental biology to investigate cellular processes, and conditional control methods have expanded applications of these technologies toward resolving complex biological questions. Light represents an excellent external trigger since it can be controlled with very high spatial and temporal precision. To this end, several optically regulated tools have been developed and applied to living systems. In this review we discuss recent developments of optochemical tools, including small molecules, peptides, proteins, and nucleic acids that can be irreversibly or reversibly controlled through light irradiation, with a focus on applications in cells and animals.
Collapse
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Taylor Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Yuta Naro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
5
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemische Steuerung biologischer Vorgänge in Zellen und Tieren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201700171] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Taylor Courtney
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Yuta Naro
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
6
|
Kocherginsky N, Gruebele M. Mechanical approach to chemical transport. Proc Natl Acad Sci U S A 2016; 113:11116-11121. [PMID: 27647899 PMCID: PMC5056083 DOI: 10.1073/pnas.1600866113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonequilibrium thermodynamics describes the rates of transport phenomena with the aid of various thermodynamic forces, but often the phenomenological transport coefficients are not known, and the description is not easily connected with equilibrium relations. We present a simple and intuitive model to address these issues. Our model is based on Lagrangian dynamics for chemical systems with dissipation, so one may think of the model as physicochemical mechanics. Using one main equation, the model allows a systematic derivation of all transport and equilibrium equations, subject to the limitation that heat generated or absorbed in the system must be small for the model to be valid. A table with all major examples of transport and equilibrium processes described using physicochemical mechanics is given. In equilibrium, physicochemical mechanics reduces to standard thermodynamics and the Gibbs-Duhem relation, and we show that the First and Second Laws of thermodynamics are satisfied for our system plus bath model. Out of equilibrium, our model provides relationships between transport coefficients and describes system evolution in the presence of several simultaneous external fields. The model also leads to an extension of the Onsager-Casimir reciprocal relations for properties simultaneously transported by many components.
Collapse
Affiliation(s)
| | - Martin Gruebele
- Department of Chemistry, University of Illinois, Urbana, IL 61801; Department of Physics, University of Illinois, Urbana, IL 61801
| |
Collapse
|
7
|
Faal T, Wong PT, Tang S, Coulter A, Chen Y, Tu CH, Baker JR, Choi SK, Inlay MA. 4-Hydroxytamoxifen probes for light-dependent spatiotemporal control of Cre-ER mediated reporter gene expression. MOLECULAR BIOSYSTEMS 2015; 11:783-90. [DOI: 10.1039/c4mb00581c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we synthesized and validated a photocaged hydroxytamoxifen molecule to achieve spatiotemporal control of gene expression with light.
Collapse
Affiliation(s)
- Tannaz Faal
- Sue and Bill Gross Stem Cell Research Center
- University of California Irvine
- Irvine
- USA
- Department of Molecular Biology and Biochemistry
| | - Pamela T. Wong
- Department of Internal Medicine
- Michigan Nanotechnology Institute for Medicine and Biological Sciences
- University of Michigan
- Ann Arbor
- USA
| | - Shengzhuang Tang
- Department of Internal Medicine
- Michigan Nanotechnology Institute for Medicine and Biological Sciences
- University of Michigan
- Ann Arbor
- USA
| | - Alexa Coulter
- Department of Internal Medicine
- Michigan Nanotechnology Institute for Medicine and Biological Sciences
- University of Michigan
- Ann Arbor
- USA
| | - Yumay Chen
- Sue and Bill Gross Stem Cell Research Center
- University of California Irvine
- Irvine
- USA
- Department of Medicine
| | - Christina H. Tu
- Sue and Bill Gross Stem Cell Research Center
- University of California Irvine
- Irvine
- USA
| | - James R. Baker
- Department of Internal Medicine
- Michigan Nanotechnology Institute for Medicine and Biological Sciences
- University of Michigan
- Ann Arbor
- USA
| | - Seok Ki Choi
- Department of Internal Medicine
- Michigan Nanotechnology Institute for Medicine and Biological Sciences
- University of Michigan
- Ann Arbor
- USA
| | - Matthew A. Inlay
- Sue and Bill Gross Stem Cell Research Center
- University of California Irvine
- Irvine
- USA
- Department of Molecular Biology and Biochemistry
| |
Collapse
|
8
|
Mosiewicz KA, Kolb L, van der Vlies AJ, Martino MM, Lienemann PS, Hubbell JA, Ehrbar M, Lutolf MP. In situ cell manipulation through enzymatic hydrogel photopatterning. NATURE MATERIALS 2013; 12:1072-8. [PMID: 24121990 DOI: 10.1038/nmat3766] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 09/02/2013] [Indexed: 05/20/2023]
Abstract
The physicochemical properties of hydrogels can be manipulated in both space and time through the controlled application of a light beam. However, methods for hydrogel photopatterning either fail to maintain the bioactivity of fragile proteins and are thus limited to short peptides, or have been used in hydrogels that often do not support three-dimensional (3D) cell growth. Here, we show that the 3D invasion of primary human mesenchymal stem cells can be spatiotemporally controlled by micropatterning the hydrogel with desired extracellular matrix (ECM) proteins and growth factors. A peptide substrate of activated transglutaminase factor XIII (FXIIIa)--a key ECM crosslinking enzyme--is rendered photosensitive by masking its active site with a photolabile cage group. Covalent incorporation of the caged FXIIIa substrate into poly(ethylene glycol) hydrogels and subsequent laser-scanning lithography affords highly localized biomolecule tethering. This approach for the 3D manipulation of cells within gels should open up avenues for the study and manipulation of cell signalling.
Collapse
Affiliation(s)
- Katarzyna A Mosiewicz
- 1] Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland [2]
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Karlsson M, Lienemann PS, Sprossmann N, Heilmann K, Brummer T, Lutolf MP, Ehrbar M, Weber W. A generic strategy for pharmacological caging of growth factors for tissue engineering. Chem Commun (Camb) 2013; 49:5927-9. [DOI: 10.1039/c3cc41616j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Chan BP. Biomedical Applications of Photochemistry. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:509-22. [DOI: 10.1089/ten.teb.2009.0797] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Barbara Pui Chan
- Medical Engineering Program, Department of Mechanical Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
11
|
Moreno-Bueno G, Peinado H, Molina P, Olmeda D, Cubillo E, Santos V, Palacios J, Portillo F, Cano A. The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat Protoc 2009; 4:1591-613. [PMID: 19834475 DOI: 10.1038/nprot.2009.152] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we describe several methods for the characterization of epithelial-mesenchymal transition (EMT) at the cellular, molecular and behavioral level. This protocol describes both in vitro and in vivo approaches designed to analyze different features that when taken together permit the characterization of cells undergoing transient or stable EMT. We define straightforward methods for phenotypical, cellular and transcriptional characterization of EMT in vitro in monolayer cultures. The procedure also presents technical details for the generation of in vitro three-dimensional (3D) cultures analyzing cell phenotype and behavior during the EMT process. In addition, we describe xenotransplantation techniques to graft 3D cell cultures into mice to study in vivo invasion in a physiological-like environment. Finally, the protocol describes the analysis of selected EMT markers from experimental and human tumor samples. This series of methods can be applied to the study of EMT under various experimental and biological situations. Once the methodology is established, the time required to complete the protocol may vary from 3 to 4 weeks (monolayer cultures) and up to 6-8 weeks if including 3D cultures.
Collapse
Affiliation(s)
- Gema Moreno-Bueno
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas 'Alberto Sols' CSIC-UAM, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|