1
|
Blackstock C, Walters-Freke C, Richards N, Williamson A. Nucleic acid joining enzymes: biological functions and synthetic applications beyond DNA. Biochem J 2025; 482:39-56. [PMID: 39840831 DOI: 10.1042/bcj20240136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025]
Abstract
DNA-joining by ligase and polymerase enzymes has provided the foundational tools for generating recombinant DNA and enabled the assembly of gene and genome-sized synthetic products. Xenobiotic nucleic acid (XNA) analogues of DNA and RNA with alternatives to the canonical bases, so-called 'unnatural' nucleobase pairs (UBP-XNAs), represent the next frontier of nucleic acid technologies, with applications as novel therapeutics and in engineering semi-synthetic biological organisms. To realise the full potential of UBP-XNAs, researchers require a suite of compatible enzymes for processing nucleic acids on a par with those already available for manipulating canonical DNA. In particular, enzymes able to join UBP-XNA will be essential for generating large assemblies and also hold promise in the synthesis of single-stranded oligonucleotides. Here, we review recent and emerging advances in the DNA-joining enzymes, DNA polymerases and DNA ligases, and describe their applications to UBP-XNA manipulation. We also discuss the future directions of this field which we consider will involve two-pronged approaches of enzyme biodiscovery for natural UBP-XNA compatible enzymes, coupled with improvement by structure-guided engineering.
Collapse
Affiliation(s)
- Chelsea Blackstock
- School of Science, University of Waikato, Hamilton, Waikato, 3216, New Zealand
| | | | - Nigel Richards
- Foundation for Applied Molecular Evolution, Alachua, FL, 32615, U.S.A
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Adele Williamson
- School of Science, University of Waikato, Hamilton, Waikato, 3216, New Zealand
| |
Collapse
|
2
|
Laatri S, El Khayari S, Qriouet Z. Exploring the molecular aspect and updating evolutionary approaches to the DNA polymerase enzymes for biotechnological needs: A comprehensive review. Int J Biol Macromol 2024; 276:133924. [PMID: 39033894 DOI: 10.1016/j.ijbiomac.2024.133924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
DNA polymerases are essential enzymes that play a key role in living organisms, as they participate in the synthesis and maintenance of the DNA molecule. The intrinsic properties of these enzymes have been widely observed and studied to understand their functions, activities, and behavior, which has allowed their natural power in DNA synthesis to be exploited in modern biotechnology, to the point of making them true pillars of the field. In this context, the laboratory evolution of these enzymes, either by directed evolution or rational design, has led to the generation of a wide range of new DNA polymerases with novel properties, suitable for a variety of biotechnological needs. In this review, we examine DNA polymerases at the molecular level, their biotechnological use, and their evolutionary methods in relation to the novel properties sought, providing a chronological selection of evolved DNA polymerases cited in the literature that we consider to be of great interest. To our knowledge, this work is the first to bring together the molecular, functional and evolutionary aspects of the DNA polymerase enzyme. We believe it will be of great interest to researchers whose aim is to produce new lines of evolved DNA polymerases.
Collapse
Affiliation(s)
- Said Laatri
- Microbiology and Molecular Biology Laboratory, Faculty of Sciences, Mohammed V-Souissi University, Rabat 10100, Morocco.
| | | | - Zidane Qriouet
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V-Souissi University, Rabat 10100, Morocco
| |
Collapse
|
3
|
Kuznetsova AA, Kuznetsov NA. Direct Enzyme Engineering of B Family DNA Polymerases for Biotechnological Approaches. Bioengineering (Basel) 2023; 10:1150. [PMID: 37892880 PMCID: PMC10604792 DOI: 10.3390/bioengineering10101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
DNA-dependent DNA polymerases have been intensively studied for more than 60 years and underlie numerous biotechnological and diagnostic applications. In vitro, DNA polymerases are used for DNA manipulations, including cloning, PCR, site-directed mutagenesis, sequencing, and others. Understanding the mechanisms of action of DNA polymerases is important for the creation of new enzymes possessing improved or modified properties. This review is focused on archaeal family B DNA polymerases. These enzymes have high fidelity and thermal stability and are finding many applications in molecular biological methods. Nevertheless, the search for and construction of new DNA polymerases with altered properties is constantly underway, including enzymes for synthetic biology. This brief review describes advances in the development of family B DNA polymerases for PCR, synthesis of xeno-nucleic acids, and reverse transcription.
Collapse
Affiliation(s)
- Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad. Lavrentyeva, Novosibirsk 630090, Russia
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad. Lavrentyeva, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Ghosh P, Kropp HM, Betz K, Ludmann S, Diederichs K, Marx A, Srivatsan SG. Microenvironment-Sensitive Fluorescent Nucleotide Probes from Benzofuran, Benzothiophene, and Selenophene as Substrates for DNA Polymerases. J Am Chem Soc 2022; 144:10556-10569. [PMID: 35666775 DOI: 10.1021/jacs.2c03454] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA polymerases can process a wide variety of structurally diverse nucleotide substrates, but the molecular basis by which the analogs are processed is not completely understood. Here, we demonstrate the utility of environment-sensitive heterocycle-modified fluorescent nucleotide substrates in probing the incorporation mechanism of DNA polymerases in real time and at the atomic level. The nucleotide analogs containing a selenophene, benzofuran, or benzothiophene moiety at the C5 position of 2'-deoxyuridine are incorporated into oligonucleotides (ONs) with varying efficiency, which depends on the size of the heterocycle modification and the DNA polymerase sequence family used. KlenTaq (A family DNA polymerase) is sensitive to the size of the modification as it incorporates only one heterobicycle-modified nucleotide into the growing polymer, whereas it efficiently incorporates the selenophene-modified nucleotide analog at multiple positions. Notably, in the single nucleotide incorporation assay, irrespective of the heterocycle size, it exclusively adds a single nucleotide at the 3'-end of a primer, which enabled devising a simple two-step site-specific ON labeling technique. KOD and Vent(exo-) DNA polymerases, belonging to the B family, tolerate all the three modified nucleotides and produce ONs with multiple labels. Importantly, the benzofuran-modified nucleotide (BFdUTP) serves as an excellent reporter by providing real-time fluorescence readouts to monitor enzyme activity and estimate the binding events in the catalytic cycle. Further, a direct comparison of the incorporation profiles, fluorescence data, and crystal structure of a ternary complex of KlenTaq DNA polymerase with BFdUTP poised for catalysis provides a detailed understanding of the mechanism of incorporation of heterocycle-modified nucleotides.
Collapse
Affiliation(s)
- Pulak Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| | - Heike M Kropp
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karin Betz
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Samra Ludmann
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Kay Diederichs
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
5
|
Christensen TA, Lee KY, Gottlieb SZP, Carrier MB, Leconte AM. Mutant polymerases capable of 2′ fluoro-modified nucleic acid synthesis and amplification with improved accuracy. RSC Chem Biol 2022; 3:1044-1051. [PMID: 35975008 PMCID: PMC9347352 DOI: 10.1039/d2cb00064d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
Nonnatural nucleic acids (xeno nucleic acids, XNA) can possess several useful properties such as expanded reactivity and nuclease resistance, which can enhance the utility of DNA as a biotechnological tool. Native DNA polymerases are unable to synthesize XNA, so, in recent years mutant XNA polymerases have been engineered with sufficient activity for use in processes such as PCR. While substantial improvements have been made, accuracy still needs to be increased by orders of magnitude to approach natural error rates and make XNA polymerases useful for applications that require high fidelity. Here, we systematically evaluate leading Taq DNA polymerase mutants for their fidelity during synthesis of 2′F XNA. To further improve their accuracy, we add mutations that have been shown to increase the fidelity of wild-type Taq polymerases, to some of the best current XNA polymerases (SFM4–3, SFM4–6, and SFP1). The resulting polymerases show significant improvements in synthesis accuracy. In addition to generating more accurate XNA polymerases, this study also informs future polymerase engineering efforts by demonstrating that mutations that improve the accuracy of DNA synthesis may also have utility in improving the accuracy of XNA synthesis. Polymerases that have been evolved to synthesize 2′F XNA are often inaccurate. Here, we show that you can improve the accuracy of 2′F XNA polymerase synthesis by adding mutations previously found to improve the accuracy of natural DNA synthesis.![]()
Collapse
Affiliation(s)
- Trevor A. Christensen
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, USA
| | - Kristi Y. Lee
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, USA
| | - Simone Z. P. Gottlieb
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, USA
| | - Mikayla B. Carrier
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, USA
| | - Aaron M. Leconte
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, USA
| |
Collapse
|
6
|
Geronimo I, Vidossich P, De Vivo M. Local Structural Dynamics at the Metal-Centered Catalytic Site of Polymerases is Critical for Fidelity. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Inacrist Geronimo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
7
|
Geronimo I, Vidossich P, Donati E, Vivo M. Computational investigations of polymerase enzymes: Structure, function, inhibition, and biotechnology. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Inacrist Geronimo
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Elisa Donati
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| | - Marco Vivo
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia Genoa Italy
| |
Collapse
|
8
|
Dutson C, Allen E, Thompson MJ, Hedley JH, Murton HE, Williams DM. Synthesis of Polyanionic C5-Modified 2'-Deoxyuridine and 2'-Deoxycytidine-5'-Triphosphates and Their Properties as Substrates for DNA Polymerases. Molecules 2021; 26:molecules26082250. [PMID: 33924626 PMCID: PMC8069024 DOI: 10.3390/molecules26082250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Modified 2′-deoxyribonucleotide triphosphates (dNTPs) have widespread applications in both existing and emerging biomolecular technologies. For such applications it is an essential requirement that the modified dNTPs be substrates for DNA polymerases. To date very few examples of C5-modified dNTPs bearing negatively charged functionality have been described, despite the fact that such nucleotides might potentially be valuable in diagnostic applications using Si-nanowire-based detection systems. Herein we have synthesised C5-modified dUTP and dCTP nucleotides each of which are labelled with an dianionic reporter group. The reporter group is tethered to the nucleobase via a polyethylene glycol (PEG)-based linkers of varying length. The substrate properties of these modified dNTPs with a variety of DNA polymerases have been investigated to study the effects of varying the length and mode of attachment of the PEG linker to the nucleobase. In general, nucleotides containing the PEG linker tethered to the nucleobase via an amide rather than an ether linkage proved to be the best substrates, whilst nucleotides containing PEG linkers from PEG6 to PEG24 could all be incorporated by one or more DNA polymerase. The polymerases most able to incorporate these modified nucleotides included Klentaq, Vent(exo-) and therminator, with incorporation by Klenow(exo-) generally being very poor.
Collapse
Affiliation(s)
- Claire Dutson
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, UK; (C.D.); (E.A.); (M.J.T.)
| | - Esther Allen
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, UK; (C.D.); (E.A.); (M.J.T.)
| | - Mark J. Thompson
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, UK; (C.D.); (E.A.); (M.J.T.)
| | - Joseph H. Hedley
- QuantuMDx Group, Lugano Building, 57 Melbourne Street, Newcastle upon Tyne NE1 2JQ, UK; (J.H.H.); (H.E.M.)
| | - Heather E. Murton
- QuantuMDx Group, Lugano Building, 57 Melbourne Street, Newcastle upon Tyne NE1 2JQ, UK; (J.H.H.); (H.E.M.)
| | - David M. Williams
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield S3 7HF, UK; (C.D.); (E.A.); (M.J.T.)
- Correspondence: ; Tel.: +44-114-222-9502
| |
Collapse
|
9
|
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Elisa Donati
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| |
Collapse
|
10
|
Arzumanyan GA, Gabriel KN, Ravikumar A, Javanpour AA, Liu CC. Mutually Orthogonal DNA Replication Systems In Vivo. ACS Synth Biol 2018; 7:1722-1729. [PMID: 29969238 PMCID: PMC6177532 DOI: 10.1021/acssynbio.8b00195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The yeast cytoplasmically localized pGKL1/TP-DNAP1 plasmid/DNA polymerase pair forms an orthogonal DNA replication system whose mutation rate can be drastically increased without influencing genomic replication, thereby supporting in vivo continuous evolution. Here, we report that the pGKL2/TP-DNAP2 plasmid/DNA polymerase pair forms a second orthogonal replication system. We show that custom genes can be encoded and expressed from pGKL2, that error-prone TP-DNAP2s can be engineered, and that pGKL2 replication by TP-DNAP2 is both orthogonal to genomic replication in Saccharomyces cerevisiae and mutually orthogonal with pGKL1 replication by TP-DNAP1. This demonstration of two mutually orthogonal DNA replication systems with tunable error rates and properties should enable new applications in cell-based continuous evolution, genetic recording, and synthetic biology at large.
Collapse
Affiliation(s)
- Garri A Arzumanyan
- Department of Biomedical Engineering , University of California , Irvine , California 92697 , United States
| | - Kristin N Gabriel
- Department of Molecular Biology & Biochemistry , University of California , Irvine , California 92697 , United States
| | - Arjun Ravikumar
- Department of Biomedical Engineering , University of California , Irvine , California 92697 , United States
| | - Alex A Javanpour
- Department of Biomedical Engineering , University of California , Irvine , California 92697 , United States
| | - Chang C Liu
- Department of Biomedical Engineering , University of California , Irvine , California 92697 , United States
- Department of Molecular Biology & Biochemistry , University of California , Irvine , California 92697 , United States
- Department of Chemistry , University of California , Irvine , California 92697 , United States
| |
Collapse
|
11
|
Abstract
The central dogma processes of DNA replication, transcription, and translation are responsible for the maintenance and expression of every gene in an organism. An orthogonal central dogma may insulate genetic programs from host regulation and allow expansion in the roles of these processes within the cell.
Collapse
Affiliation(s)
- Chang C. Liu
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- Department of Chemistry, University of California, Irvine, California, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Jason W. Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Department of Chemistry, Cambridge University, Cambridge, UK
| | - Chris A. Voigt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Agudo R, Calvo PA, Martínez-Jiménez MI, Blanco L. Engineering human PrimPol into an efficient RNA-dependent-DNA primase/polymerase. Nucleic Acids Res 2017; 45:9046-9058. [PMID: 28911121 PMCID: PMC5587808 DOI: 10.1093/nar/gkx633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/12/2017] [Indexed: 02/01/2023] Open
Abstract
We have developed a straightforward fluorometric assay to measure primase-polymerase activity of human PrimPol (HsPrimPol). The sensitivity of this procedure uncovered a novel RNA-dependent DNA priming-polymerization activity (RdDP) of this enzyme. In an attempt to enhance HsPrimPol RdDP activity, we constructed a smart mutant library guided by prior sequence-function analysis, and tested this library in an adapted screening platform of our fluorometric assay. After screening less than 500 variants, we found a specific HsPrimPol mutant, Y89R, which displays 10-fold higher RdDP activity than the wild-type enzyme. The improvement of RdDP activity in the Y89R variant was due mainly to an increased in the stabilization of the preternary complex (protein:template:incoming nucleotide), a specific step preceding dimer formation. Finally, in support of the biotechnological potential of PrimPol as a DNA primer maker during reverse transcription, mutant Y89R HsPrimPol rendered up to 17-fold more DNA than with random hexamer primers.
Collapse
Affiliation(s)
- Rubén Agudo
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91 196 46 85; Fax: +34 91 196 44 20; . Correspondence may also be addressed to Rubén Agudo. Tel: +34 91 196 46 86; Fax: +34 91 196 44 20;
| | - Patricia A. Calvo
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | | | - Luis Blanco
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91 196 46 85; Fax: +34 91 196 44 20; . Correspondence may also be addressed to Rubén Agudo. Tel: +34 91 196 46 86; Fax: +34 91 196 44 20;
| |
Collapse
|
13
|
Rosenblum SL, Weiden AG, Lewis EL, Ogonowsky AL, Chia HE, Barrett SE, Liu MD, Leconte AM. Design and Discovery of New Combinations of Mutant DNA Polymerases and Modified DNA Substrates. Chembiochem 2017; 18:816-823. [PMID: 28160372 DOI: 10.1002/cbic.201600701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Indexed: 11/06/2022]
Abstract
Chemical modifications can enhance the properties of DNA by imparting nuclease resistance and generating more-diverse physical structures. However, native DNA polymerases generally cannot synthesize significant lengths of DNA with modified nucleotide triphosphates. Previous efforts have identified a mutant of DNA polymerase I from Thermus aquaticus DNA (SFM19) as capable of synthesizing a range of short, 2'-modified DNAs; however, it is limited in the length of the products it can synthesize. Here, we rationally designed and characterized ten mutants of SFM19. From this, we identified enzymes with substantially improved activity for the synthesis of 2'F-, 2'OH-, 2'OMe-, and 3'OMe-modified DNA as well as for reverse transcription of 2'OMe DNA. We also evaluated mutant DNA polymerases previously only tested for synthesis for 2'OMe DNA and showed that they are capable of an expanded range of modified DNA synthesis. This work significantly expands the known combinations of modified DNA and Taq DNA polymerase mutants.
Collapse
Affiliation(s)
- Sydney L Rosenblum
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Aurora G Weiden
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Eliza L Lewis
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Alexie L Ogonowsky
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Hannah E Chia
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Susanna E Barrett
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Mira D Liu
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Aaron M Leconte
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| |
Collapse
|
14
|
Abstract
Aptamers are nucleic acid-based scaffolds that can bind with high affinity to a variety of biological targets. Aptamers are identified from large DNA or RNA libraries through a process of directed molecular evolution (SELEX). Chemical modification of nucleic acids considerably increases the functional and structural diversity of aptamer libraries and substantially increases the affinity of the aptamers. Additionally, modified aptamers exhibit much greater resistance to biodegradation. The evolutionary selection of modified aptamers is conditioned by the possibility of the enzymatic synthesis and replication of non-natural nucleic acids. Wild-type or mutant polymerases and their non-natural nucleotide substrates that can support SELEX are highlighted in the present review. A focus is made on the efforts to find the most suitable type of nucleotide modifications and the engineering of new polymerases. Post-SELEX modification as a complementary method will be briefly considered as well.
Collapse
Affiliation(s)
- Sergey A Lapa
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Edward N Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Huber C, von Watzdorf J, Marx A. 5-methylcytosine-sensitive variants of Thermococcus kodakaraensis DNA polymerase. Nucleic Acids Res 2016; 44:9881-9890. [PMID: 27651460 PMCID: PMC5175357 DOI: 10.1093/nar/gkw812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/03/2016] [Accepted: 09/05/2016] [Indexed: 12/28/2022] Open
Abstract
DNA methylation of cytosine in eukaryotic cells is a common epigenetic modification, which plays an important role in gene expression and thus affects various cellular processes like development and carcinogenesis. The occurrence of 5-methyl-2'-deoxycytosine (5mC) as well as the distribution pattern of this epigenetic marker were shown to be crucial for gene regulation and can serve as important biomarkers for diagnostics. DNA polymerases distinguish little, if any, between incorporation opposite C and 5mC, which is not surprising since the site of methylation is not involved in Watson-Crick recognition. Here, we describe the development of a DNA polymerase variant that incorporates the canonical 2'-deoxyguanosine 5'-monophosphate (dGMP) opposite C with higher efficiency compared to 5mC. The variant of Thermococcus kodakaraensis (KOD) exo- DNA polymerase was discovered by screening mutant libraries that were built by rational design. We discovered that an amino acid substitution at a single site that does not directly interact with the templating nucleobase, may alter the ability of the DNA polymerase in processing C in comparison to 5mC. Employing these findings in combination with a nucleotide, which is fluorescently labeled at the terminal phosphate, indicates the potential use of the mutant DNA polymerase in the detection of 5mC.
Collapse
Affiliation(s)
- Claudia Huber
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany
| | - Janina von Watzdorf
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany
| |
Collapse
|
16
|
Affiliation(s)
| | - Andreas Manz
- KIST Europe, Campus E7.1, 66123 Saarbrücken, Germany
| | - Pavel Neužil
- Northwestern Polytechnical University (NPU), School of
Mechanical Engineering, Department of Microsystem Engineering, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
- Brno University of Technology, Central European Institute of Technology (CEITEC) and Faculty of Electrical Engineering and Communication (FEEC), Antonínská 548/1, CZ-601
90 Brno, Czech Republic
| |
Collapse
|
17
|
Schultz HJ, Gochi AM, Chia HE, Ogonowsky AL, Chiang S, Filipovic N, Weiden AG, Hadley EE, Gabriel SE, Leconte AM. Taq DNA Polymerase Mutants and 2'-Modified Sugar Recognition. Biochemistry 2015; 54:5999-6008. [PMID: 26334839 DOI: 10.1021/acs.biochem.5b00689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical modifications to DNA, such as 2' modifications, are expected to increase the biotechnological utility of DNA; however, these modified forms of DNA are limited by their inability to be effectively synthesized by DNA polymerase enzymes. Previous efforts have identified mutant Thermus aquaticus DNA polymerase I (Taq) enzymes capable of recognizing 2'-modified DNA nucleotides. While these mutant enzymes recognize these modified nucleotides, they are not capable of synthesizing full length modified DNA; thus, further engineering is required for these enzymes. Here, we describe comparative biochemical studies that identify useful, but previously uncharacterized, properties of these enzymes; one enzyme, SFM19, is able to recognize a range of 2'-modified nucleotides much wider than that previously examined, including fluoro, azido, and amino modifications. To understand the molecular origins of these differences, we also identify specific amino acids and combinations of amino acids that contribute most to the previously evolved unnatural activity. Our data suggest that a negatively charged amino acid at 614 and mutation of the steric gate residue, E615, to glycine make up the optimal combination for modified oligonucleotide synthesis. These studies yield an improved understanding of the mutational origins of 2'-modified substrate recognition as well as identify SFM19 as the best candidate for further engineering, whether via rational design or directed evolution.
Collapse
Affiliation(s)
- Hayley J Schultz
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Andrea M Gochi
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Hannah E Chia
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Alexie L Ogonowsky
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Sharon Chiang
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Nedim Filipovic
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Aurora G Weiden
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Emma E Hadley
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Sara E Gabriel
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Aaron M Leconte
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| |
Collapse
|
18
|
Generation of Aptamers with an Expanded Chemical Repertoire. Molecules 2015; 20:16643-71. [PMID: 26389865 PMCID: PMC6332006 DOI: 10.3390/molecules200916643] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 01/03/2023] Open
Abstract
The enzymatic co-polymerization of modified nucleoside triphosphates (dN*TPs and N*TPs) is a versatile method for the expansion and exploration of expanded chemical space in SELEX and related combinatorial methods of in vitro selection. This strategy can be exploited to generate aptamers with improved or hitherto unknown properties. In this review, we discuss the nature of the functionalities appended to nucleoside triphosphates and their impact on selection experiments. The properties of the resulting modified aptamers will be described, particularly those integrated in the fields of biomolecular diagnostics, therapeutics, and in the expansion of genetic systems (XNAs).
Collapse
|
19
|
Millar D, Christova Y, Holliger P. A polymerase engineered for bisulfite sequencing. Nucleic Acids Res 2015; 43:e155. [PMID: 26271989 PMCID: PMC4678845 DOI: 10.1093/nar/gkv798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/27/2015] [Indexed: 01/17/2023] Open
Abstract
Bisulfite sequencing is a key methodology in epigenetics. However, the standard workflow of bisulfite sequencing involves heat and strongly basic conditions to convert the intermediary product 5,6-dihydrouridine-6-sulfonate (dhU6S) (generated by reaction of bisulfite with deoxycytidine (dC)) to uracil (dU). These harsh conditions generally lead to sample loss and DNA damage while milder conditions may result in incomplete conversion of intermediates to uracil. Both can lead to poor recovery of bisulfite-treated DNA by the polymerase chain reaction (PCR) as either damaged DNA and/or intermediates of bisulfite treatment are poor substrate for standard DNA polymerases. Here we describe an engineered DNA polymerase (5D4) with an enhanced ability to replicate and PCR amplify bisulfite-treated DNA due to an ability to bypass both DNA lesions and bisulfite intermediates, allowing significantly milder conversion conditions and increased sensitivity in the PCR amplification of bisulfite-treated DNA. Incorporation of the 5D4 DNA polymerase into the bisulfite sequencing workflow thus promises significant sensitivity and efficiency gains.
Collapse
Affiliation(s)
- Doug Millar
- Genetic Signatures, Level 9, Lowy Packer Building 405, Liverpool Street, Darlinghurst 2010, Sydney, Australia
| | - Yonka Christova
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
20
|
Walsh G. Additional Industrial Enzymes. Proteins 2015. [DOI: 10.1002/9781119117599.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Gjonaj L, Roelfes G. Selective chemical modification of DNA with alkoxy- and benzyloxyamines. Org Biomol Chem 2015; 13:6059-65. [DOI: 10.1039/c5ob00595g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNA is modified selectively at cytosine with benzyloxyamine and -derivatives carrying handles for click reactions.
Collapse
Affiliation(s)
- Lorina Gjonaj
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
22
|
Connelly CM, Porter LR, TerMaat JR. PCR amplification of a triple-repeat genetic target directly from whole blood in 15 minutes as a proof-of-principle PCR study for direct sample analysis for a clinically relevant target. BMC MEDICAL GENETICS 2014; 15:130. [PMID: 25495904 PMCID: PMC4411754 DOI: 10.1186/s12881-014-0130-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/24/2014] [Indexed: 01/12/2023]
Abstract
Background Most PCR-based diagnostics are still considered time- and labor-intensive due to disparate purification, amplification, and detection steps. Advancements in PCR enzymes and buffer chemistry have increased inhibitor tolerance, facilitating PCR directly from crude samples. Obviating the need for DNA purification, while lacking a concentration step, these direct sample methods are particularly apt for human genetic testing. However, direct PCR protocols have traditionally employed thermal cyclers with slow ramp rates and conservative hold times that significantly increase an assay’s time-to-result. For this proof-of-principle study, our objective was to significantly reduce sample preparation and assay time for a PCR-based genetic test, for myotonic dystrophy type 1 (DM1), by pairing an inhibitor-resistant enzyme mix with a rapid thermal cycler to analyze samples directly in whole blood. Methods DM1 genetic screening was done with an adapted conventional PCR approach that employed the Streck Philisa® Thermal Cycler, the inhibitor-resistant NEBNext® High-Fidelity 2X PCR Master Mix, and agarose gel electrophoresis or an Agilent 2100 Bioanalyzer for detection. The Gene Link™ Myotonic Dystrophy Genemer™ Kit was used as a reference assay kit to evaluate the rapid assay. Results In this work, a rapid and direct PCR assay testing 10% whole blood as template has been developed as an exclusionary screening assay for DM1, a triple-repeat genetic disorder. PCR amplification was completed in 15 minutes using 30 cycles, including in situ hot-start/cell lysis. Out of the 40 donors screened, this assay identified 23 (57.5%) as DM1 negative suggesting no need for further testing. These data are 100% concordant with data collected using the commercially available Gene Link Genemer™ Kit per the kit-specific PCR protocol. Conclusions The PCR assay described in this study amplified DM1 short tandem repeats in 15 minutes. By eliminating sample purification and slower conventional PCR protocols, we demonstrated how adaptation of current PCR technology and chemistries can produce a simple-to-use exclusionary screening assay that is independent of up-front sample prep, improving a clinical lab technician’s time-to-result. We envision this direct and rapid methodology could be applied to other conventional PCR-based genetic tests and sample matrices where genomic DNA is targeted for analysis within a given molecular diagnostic platform.
Collapse
Affiliation(s)
| | - Laura R Porter
- Streck, Inc., 7002 S. 109th Street, LaVista, Omaha, NE, 68128, USA.
| | - Joel R TerMaat
- Streck, Inc., 7002 S. 109th Street, LaVista, Omaha, NE, 68128, USA.
| |
Collapse
|
23
|
Hollenstein M, Leumann CJ. Synthesis and biochemical characterization of tricyclothymidine triphosphate (tc-TTP). Chembiochem 2014; 15:1901-4. [PMID: 25044722 DOI: 10.1002/cbic.201402116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Indexed: 01/03/2023]
Abstract
Tricyclo-DNA (tc-DNA) is a conformationally restricted oligonucleotide analogue that exhibits promising properties as a robust antisense agent. Here we report on the synthesis and biochemical characterization of tc-TTP, the triphosphate of a tc-DNA nucleoside containing the base thymine. Tc-TTP turned out to be a substrate for the Vent (exo(-) ) DNA polymerase, a polymerase that allows for multiple incorporations of tc-T nucleotides under primer extension reaction conditions. However, the substrate acceptance is rather low, as also observed for other sugar-modified analogues. Tc-TTP and tc-nucleotide-containing templates do not sustain enzymatic polymerization under physiological conditions; this indicates that tc-DNA-based antisense agents will not enter natural metabolic pathways that lead to long-term toxicity.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland).
| | | |
Collapse
|
24
|
Biava H, Budisa N. Evolution of fluorinated enzymes: An emerging trend for biocatalyst stabilization. Eng Life Sci 2014. [DOI: 10.1002/elsc.201300049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Hernan Biava
- Department of Biocatalysis, Institute of Chemistry Berlin Institute of Technology/TU Berlin Berlin Germany
| | - Nediljko Budisa
- Department of Biocatalysis, Institute of Chemistry Berlin Institute of Technology/TU Berlin Berlin Germany
| |
Collapse
|
25
|
Takei F, Nakatani K. The Chemistry of Polymerase Chain Reaction^|^mdash;Development of the PCR Method Using New Modified Primers^|^mdash;. J SYN ORG CHEM JPN 2014. [DOI: 10.5059/yukigoseikyokaishi.72.370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Wilson RH, Morton SK, Deiderick H, Gerth ML, Paul HA, Gerber I, Patel A, Ellington AD, Hunicke-Smith SP, Patrick WM. Engineered DNA ligases with improved activities in vitro. Protein Eng Des Sel 2013; 26:471-8. [DOI: 10.1093/protein/gzt024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
27
|
Bergen K, Betz K, Welte W, Diederichs K, Marx A. Structures of KOD and 9°N DNA polymerases complexed with primer template duplex. Chembiochem 2013; 14:1058-62. [PMID: 23733496 DOI: 10.1002/cbic.201300175] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 12/29/2022]
Abstract
Replicate it: Structures of KOD and 9°N DNA polymerases, two enzymes that are widely used to replicate DNA with highly modified nucleotides, were solved at high resolution in complex with primer/template duplex. The data elucidate substrate interaction of the two enzymes and pave the way for further optimisation of the enzymes and substrates.
Collapse
Affiliation(s)
- Konrad Bergen
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
28
|
Nawale GN, Gore KR, Höbartner C, Pradeepkumar PI. Incorporation of 4'-C-aminomethyl-2'-O-methylthymidine into DNA by thermophilic DNA polymerases. Chem Commun (Camb) 2013; 48:9619-21. [PMID: 22908130 DOI: 10.1039/c2cc35222b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The dual modified nucleotide 4'-C-aminomethyl-2'-O-methylthymidine 5'-triphosphate was synthesized and enzymatically incorporated into DNA by the thermophilic DNA polymerases Pfu and Therminator III. The dual ribose modification imparted increased exonuclease resistance to DNA compared to the well-known 2'-O-methyl modification.
Collapse
Affiliation(s)
- Ganesh N Nawale
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | | | | |
Collapse
|
29
|
Liang F, Liu YZ, Zhang P. Universal base analogues and their applications in DNA sequencing technology. RSC Adv 2013. [DOI: 10.1039/c3ra41492b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
30
|
Hollenstein M. Nucleoside triphosphates--building blocks for the modification of nucleic acids. Molecules 2012; 17:13569-91. [PMID: 23154273 PMCID: PMC6268876 DOI: 10.3390/molecules171113569] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/07/2012] [Accepted: 11/09/2012] [Indexed: 11/16/2022] Open
Abstract
Nucleoside triphosphates are moldable entities that can easily be functionalized at various locations. The enzymatic polymerization of these modified triphosphate analogues represents a versatile platform for the facile and mild generation of (highly) functionalized nucleic acids. Numerous modified triphosphates have been utilized in a broad palette of applications spanning from DNA-tagging and -labeling to the generation of catalytic nucleic acids. This review will focus on the recent progress made in the synthesis of modified nucleoside triphosphates as well as on the understanding of the mechanisms underlying their polymerase acceptance. In addition, the usefulness of chemically altered dNTPs in SELEX and related methods of in vitro selection will be highlighted, with a particular emphasis on the generation of modified DNA enzymes (DNAzymes) and DNA-based aptamers.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
31
|
Takei F, Igarashi M, Oka Y, Koga Y, Nakatani K. Competitive allele-specific hairpin primer PCR for extremely high allele discrimination in typing of single nucleotide polymorphisms. Chembiochem 2012; 13:1409-12. [PMID: 22689446 DOI: 10.1002/cbic.201200266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Fumie Takei
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | | | | | | | | |
Collapse
|
32
|
Directed evolution: an evolving and enabling synthetic biology tool. Curr Opin Chem Biol 2012; 16:285-91. [PMID: 22673064 DOI: 10.1016/j.cbpa.2012.05.186] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/06/2012] [Accepted: 05/11/2012] [Indexed: 01/08/2023]
Abstract
Synthetic biology, with its goal of designing biological entities for wide-ranging purposes, remains a field of intensive research interest. However, the vast complexity of biological systems has heretofore rendered rational design prohibitively difficult. As a result, directed evolution remains a valuable tool for synthetic biology, enabling the identification of desired functionalities from large libraries of variants. This review highlights the most recent advances in the use of directed evolution in synthetic biology, focusing on new techniques and applications at the pathway and genome scale.
Collapse
|
33
|
Holzberger B, Strohmeier J, Siegmund V, Diederichsen U, Marx A. Enzymatic synthesis of 8-vinyl- and 8-styryl-2'-deoxyguanosine modified DNA--novel fluorescent molecular probes. Bioorg Med Chem Lett 2012; 22:3136-9. [PMID: 22483394 DOI: 10.1016/j.bmcl.2012.03.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 12/19/2022]
Abstract
Fluorescent analogs of the natural nucleobases are widely used as molecular probes for investigating DNA hybridization and topology. In this study the guanosine analogs 8-vinyl- and 8-styryl-2'-deoxyguanosine were synthesized and converted into the corresponding 5'-triphosphates. These C8 modified nucleotides were processed by various DNA polymerases to create fluorescent DNA. Whereas the 8-styryl modified nucleotide somewhat hampers DNA synthesis 8-vinyl-2'-deoxyguanosine is processed by DNA polymerases emphasizing the broad applicability as a molecular probe for fluorescence spectroscopy.
Collapse
Affiliation(s)
- Bastian Holzberger
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
34
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
35
|
Rutledge LR, Wetmore SD. A computational proposal for the experimentally observed discriminatory behavior of hypoxanthine, a weak universal nucleobase. Phys Chem Chem Phys 2012; 14:2743-53. [PMID: 22270716 DOI: 10.1039/c2cp23600a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A computational model composed of six nucleobases was used to investigate why hypoxanthine does not yield duplexes of equal stability when paired opposite each of the natural DNA nucleobases. The magnitudes of all nearest-neighbor interactions in a DNA helix were calculated, including hydrogen-bonding, intra- and interstrand stacking interactions, as well as 1-3 intrastrand stacking interactions. Although the stacking interactions in DNA relevant arrangements are significant and account for at least one third of the total stabilization energy in our nucleobase complexes, the trends in the magnitude of the stacking interactions cannot explain the relative experimental melting temperatures previously reported in the literature. Furthermore, although the total hydrogen-bonding interactions explain why hypoxanthine preferentially pairs with cytosine, the experimental trend for the remaining nucleobases (A, T, G) is not explained. In fact, the calculated pairing preference of hypoxanthine matches that determined experimentally only when the sum of all types of nearest-neighbor interactions is considered. This finding highlights a strong correlation between the relative magnitude of the total nucleobase-nucleobase interactions and measured melting temperatures for DNA strands containing hypoxanthine despite the potential role of other factors (including hydration, temperature, sugar-phosphate backbone). By considering a large range of sequence combinations, we reveal that the binding preference of hypoxanthine is strongly dependent on the nucleobase sequence, which may explain the varied ability of hypoxanthine to universally bind to the natural bases. As a result, we propose that future work should closely examine the interplay between the dominant nucleobase-nucleobase interactions and the overall strand stability to fully understand how sequence context affects the universal binding properties of modified bases and to aid the design of new molecules with ambiguous pairing properties.
Collapse
Affiliation(s)
- Lesley R Rutledge
- Department of Chemistry & Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
| | | |
Collapse
|